题目内容
16.| A. | 角平分线 | B. | 中线 | C. | 高 | D. | 以上都不对 |
分析 根据三角形的三个内角的平分线交于一点,根据题意,可知CD是△ABC的角平分线.
解答 解:∵∠A、∠B的平分线交于点O,三角形的三个内角的平分线交于一点,
∴∠ACB的平分线也过0点,
∴CD是△ABC的角平分线.
故选A.
点评 本题主要考查了三角形的角平分线,掌握三角形的三条角平分线相交于一点,是解答本题的关键,一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.
练习册系列答案
相关题目
4.对于一元二次方程ax2+bx+c=0(a≠0),有下列说法:
①当a<0,且b>a+c时,方程一定有实数根;
②若ac<0,则方程有两个不相等的实数根;
③若a-b+c=0,则方程一定有一个根为-1;
④若方程有两个不相等的实数根,则方程bx2+ax+c=0一定有两个不相等的实数根.
其中正确的有( )
①当a<0,且b>a+c时,方程一定有实数根;
②若ac<0,则方程有两个不相等的实数根;
③若a-b+c=0,则方程一定有一个根为-1;
④若方程有两个不相等的实数根,则方程bx2+ax+c=0一定有两个不相等的实数根.
其中正确的有( )
| A. | ①②③ | B. | ①②④ | C. | ②③ | D. | ①②③④ |
8.方程x2+16=8x的根的情况为( )
| A. | 有两个不相等的实数根 | B. | 有两个相等的实数根 | ||
| C. | 有一个实数根 | D. | 没有实数根 |