题目内容
13.解下列方程组:(1)$\left\{\begin{array}{l}{2x+y=3}\\{x-y=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+3y=12}\\{2x-3y=6}\end{array}\right.$
(3)$\left\{\begin{array}{l}{3x-y=4}\\{3x+y=14}\end{array}\right.$
(4)$\left\{\begin{array}{l}{x+y=6}\\{y+2x=2}\end{array}\right.$.
分析 各方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{2x+y=3①}\\{x-y=0②}\end{array}\right.$,
①+②得:3x=3,
解得:x=1,
把x=1代入②得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+3y=12①}\\{2x-3y=6②}\end{array}\right.$,
①+②得:3x=18,
解得:x=6,
把x=6代入①得:y=2,
则方程组的解为$\left\{\begin{array}{l}{x=6}\\{y=2}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{x+y=6①}\\{y+2x=2②}\end{array}\right.$,
②-①得:x=-4,
把x=-4代入①得:y=10,
则方程组的解为$\left\{\begin{array}{l}{x=-4}\\{y=10}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
1.
如图,将含30°角的三角板ABC放置在坐标系中,此时直角顶点C的坐标是(-1,0),30°角的顶点B在反比例函数y=$\frac{2\sqrt{3}}{x}$位于第一象限内的图象上,顶点A在反比例函数y=$\frac{k}{x}$位于第二象限内的图象上,且AB∥x轴,则k的值是( )
| A. | -2$\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | -1 | D. | -2 |