题目内容

5.如图,计算∠A+∠B+∠C+∠D+∠E的度数.

分析 连接AC,根据三角形的内角和定理求出∠D+∠E=∠OAC+∠OCA,再利用三角形的内角和等于180°求解即可.

解答 解:如图,连接AC,
∵∠D+∠E+∠DOE=180°,
∠OAC+∠OCA+∠AOC=180°,
∠DOE=∠AOC(对顶角相等),
∴∠D+∠E=∠OAC+∠OCA,
在△ABC中,∠BAC+∠B+∠ACB=180°,
所以,∠BAO+∠CAO+∠B+∠BCO+∠ACO=180°,
所以,∠A+∠B+∠C+∠D+∠E=180°.

点评 本题考查了三角形的内角和定理,熟记定理并准确识图理清图中各角度之间的关系是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网