题目内容
4.若方程组$\left\{\begin{array}{l}{ax+y=0}\\{2x+by=6}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$,则a+b=( )| A. | 2 | B. | -2 | C. | 0 | D. | 4 |
分析 根据方程组$\left\{\begin{array}{l}{ax+y=0}\\{2x+by=6}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$,可以求得a、b的值,从而可以求得a+b的值.
解答 解:∵方程组$\left\{\begin{array}{l}{ax+y=0}\\{2x+by=6}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a-2=0}\\{2-2b=6}\end{array}\right.$,
解得,a=2,b=-2,
∴a+b=2+(-2)=0,
故选C.
点评 本题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.
练习册系列答案
相关题目