题目内容

20.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50(含5和50)之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据:
薄板的边长(cm)2030
出厂价(元/张)5070
(1)求一张薄板的出厂价y与边长x之间满足的函数关系式,并写出自变量的取值范围;
(2)已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).
①求一张薄板的利润W与边长x这之间满足的函数关系式;
②当边长为多少厘米时,出厂一张薄板获得的利润最大?最大利润是多少元?

分析 (1)利用待定系数法求一次函数解析式即可得出答案;
(2)①首先假设一张薄板的利润为W元,它的成本价为mx2元,由题意,得:W=y-mx2,进而得出m的值,求出函数解析式即可;
②利用二次函数的最值公式求出二次函数的最值即可.

解答 解:(1)设一张薄板的边长为xcm,它的出厂价为y元,基础价为n元,浮动价为kx元,则y=kx+n.
由表格中的数据,得$\left\{\begin{array}{l}{50=20k+n}\\{70=30k+n}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=2}\\{n=10}\end{array}\right.$,
所以y与边长x之间满足的函数关系式为:y=2x+10(5≤x≤50);

(2)①设一张薄板的利润为W元,它的成本价为mx2元,由题意,得:
W=y-mx2=2x+10-mx2
将x=40,W=26代入W=2x+10-mx2中,
得26=2×40+10-m×402
解得:m=$\frac{1}{25}$.
所以W=-$\frac{1}{25}$x2+2x+10.

②因为a=-$\frac{1}{25}$<0,所以,当x=-$\frac{b}{2a}$=-$\frac{2}{2×(-\frac{1}{25})}$═25(在5~50之间)时,
W最大值=$\frac{4ac-{b}^{2}}{4a}$=$\frac{4×(-\frac{1}{25})×10-{2}^{2}}{4×(-\frac{1}{25})}$=35.
即出厂一张边长为25cm的薄板,获得的利润最大,最大利润是35元.

点评 本题考查了二次函数的最值求法以及待定系数法求一次函数解析式,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网