题目内容

18.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.
(1)求证:AE=CF;
(2)连结ED、FB,判断四边形BEDF是否是平行四边形,说明理由.

分析 (1)根据角平分线的性质先得出∠BEC=∠DFA,然后再证∠ACB=∠CAD,再证出△ABE≌△CDF,从而得出AE=CF;
(2)连接BD交AC于O,则可知OB=OD,OA=OC,又AE=CF,所以OE=OF,然后依据对角线互相平分的四边形是平行四边形即可证明.

解答 (1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠ABC=∠CDA,AB∥CD∴∠BAC=∠DCA,
∵BE、DF分别是∠ABC、∠ADC的平分线,
∴∠ABE=$\frac{1}{2}$∠ABC,∠CDF=$\frac{1}{2}$∠ADC
∴∠ABE=∠CDF,
∴△ABE≌△CDF (ASA),
∴AE=CF;

(2)是平行四边形;
连接BD交AC于O,
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO
∵AE=CF,
∴AO-AE=CO-CF.
即EO=FO.
∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形).

点评 本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网