题目内容

15.如图,在平面直角坐标系xOy中,四边形ABOC是正方形,点A的坐标为(1,1),$\widehat{A{A}_{1}}$是以点B为圆心,BA为半径的圆弧,$\widehat{{A}_{1}{A}_{2}}$是以点O为圆心,OA1为半径的圆弧,$\widehat{{A}_{2}{A}_{3}}$是以点C为圆心,CA2为半径的圆弧,$\widehat{{A}_{3}{A}_{4}}$是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心按上述做法得到的曲线AA1A2A3A4A5…称为正方形的渐开线“,那么点A5的坐标是(6,0),点A2016的坐标是(1,2017).

分析 根据画弧的方法以及罗列部分点的坐标发现:点Ax的坐标满足“A4n=(1,4n+1),A4n+1=(4n+2,0),A4n+2=(0,-(4n+2)),A4n+3=(-(4n+3),1)”,根据这一规律即可得出A5和A2016点的坐标.

解答 解:观察,找规律:A(1,1),A1(2,0),A2(0,-2),A3(-3,1),A4(1,5),A5(6,0),A6(0,-6),A7(-7,1),A8(1,9)…,
∴A4n=(1,4n+1),A4n+1=(4n+2,0),A4n+2=(0,-(4n+2)),A4n+3=(-(4n+3),1).
∵5=4+1,2016=504×4,
∴A5的坐标为(64+2,0)=(6,0),A2016的坐标为(1,4×504+1)=(1,2017).
故答案为:(6,0);(1,2017).

点评 本题考查了规律型中的点的坐标,解题的关键是罗列出部分点的坐标找出“A4n=(1,4n+1),A4n+1=(4n+2,0),A4n+2=(0,-(4n+2)),A4n+3=(-(4n+3),1)”这一规律.本题属于基础题,难度不大,解决该题型题目时,结合画弧的方法以及部分点的坐标寻找出来点的排布规律是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网