题目内容
5.(1)求k的值;
(2)将这个菱形沿x轴正方向平移,当顶点D落在反比例函数图象上时,求菱形平移的距离.
分析 (1)根据点D的坐标为(4,3),即可得出DE的长以及DO的长,即可得出A点坐标,进而求出k的值;
(2)根据D′F′的长度即可得出D′点的纵坐标,进而利用反比例函数的性质求出OF′的长,即可得出答案;
解答 解:(1)作DE⊥BO,DF⊥x轴于点F,
,
∵点D的坐标为(4,3),
∴FO=4,DF=3,
∴DO=5,
∴AD=5,
∴A点坐标为:(4,8),
∴xy=4×8=32,
∴k=32;
(2)∵将菱形ABCD向右平移,使点D落在反比例函数y=$\frac{32}{x}$(x>0)的图象上,
∴DF=3,D′F′=3,
∴D′点的纵坐标为3,
∴3=$\frac{32}{x}$,
x=$\frac{32}{x}$,
∴OF′=$\frac{32}{3}$,
∴FF′=$\frac{32}{3}$-4=$\frac{20}{3}$,
∴菱形ABCD向右平移的距离为:$\frac{20}{3}$.
点评 本题主要考查反比例函数图象上点的坐标特征,利用了菱形的性质,利用了平移的特点,根据已知得出A点坐标是解题关键.
练习册系列答案
相关题目
16.据统计2015年宁波市实现地区生产总值8011.5亿元,按可比价格计算,比上年增长了8%,把8011.5亿用科学记数法表示是( )
| A. | 8011.5×108 | B. | 801.15×109 | C. | 8.0115×1010 | D. | 8.0115×1011 |
10.
如图,直线y=-x+2与y轴交于点A,与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数的解析式为( )
| A. | y=$\frac{3}{x}$ | B. | y=-$\frac{3}{x}$ | C. | y=$\frac{3}{2x}$ | D. | y=-$\frac{3}{2x}$ |