题目内容

10.如图,在等腰△ABC中,AB=AC,△ADE是等边三角形,且DE∥BC,AD,AE分别交BC于点M,N.求证:BM=CN.

分析 利用等边三角形的性质和等腰三角形的性质,证明△ABM≌△ACN,利用全等三角形的对应边相等即可解答.

解答 解:∵△ADE是等边三角形,
∴∠D=∠E=60°,
∵DE∥BC,
∴∠AMN=∠D,∠ANM=∠E,
∴∠AMN=∠ANM=60°,
∴∠AMB=∠ANC=120°,
∵AB=AC,
∴∠B=∠C,
在△ABM和△ACN中,
$\left\{\begin{array}{l}{∠B=∠C}\\{∠AMB=∠ANC}\\{AB=AC}\end{array}\right.$
∴△ABM≌△ACN,
∴BM=CN.

点评 本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABM≌△ACN.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网