题目内容

2.已知:如图,△ABC中,AD⊥BC于D,AD=200,∠B=30°,∠C=45°.求BC的长.

分析 首先解Rt△ABD,求出BD的长度,再解Rt△ADC,求出DC的长度,然后由BC=BD+DC即可求解.

解答 解:∵AD⊥BC于点D,
∴∠ADB=∠ADC=90°.
在Rt△ABD中,∵AD=200,∠B=30°,
∴BD=$\sqrt{3}$AD=200$\sqrt{3}$.
在Rt△ADC中,∵∠C=45°,∠ADC=90°,
∴DC=AD=200,
∴BC=BD+DC=200$\sqrt{3}$+200.

点评 本题考查了解直角三角形的知识,属于基础题,解答本题的关键是在直角三角形中利用解直角三角形的知识求出BD、DC的长度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网