题目内容
7.分析 首先根据旋转的定义,可得旋转中心为点B,然后判断出AB按顺时针方向旋转到BC所在的位置,旋转了90度,所以△AEB按顺时针方向旋转一个角度后成为△CFB,旋转了90度,据此解答即可.
解答 解:∵AB按顺时针方向旋转到BC所在的位置,旋转了90度,
∴△AEB按顺时针方向旋转一个角度后成为△CFB,则旋转了90度.
故答案为:90.
点评 此题主要考查了旋转的定义和性质的应用,要熟练掌握,解答此题的关键是判断出:(1)旋转中心为点B;(2)AB按顺时针方向旋转到BC所在的位置,旋转了90度.
练习册系列答案
相关题目
18.
如图,PA、PB是⊙O的切线,A、B是切点,AC是⊙O的直径,连PC交⊙O于点D,若BD∥AC,则tan∠ACP的值是( )
| A. | $\frac{3}{\sqrt{3}}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{3\sqrt{3}}{5}$ |
17.等腰三角形的底边长10cm,周长36cm,则底角的余弦值为( )
| A. | $\frac{5}{12}$ | B. | $\frac{12}{5}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |