题目内容

如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.
(1)若∠B=30°,∠ACB=80°,求∠E的度数;
(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.
考点:三角形内角和定理,三角形的外角性质
专题:
分析:(1)首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;
(2)根据第(1)小题的思路即可推导这些角之间的关系.
解答:解:(1)∵∠B=30°,∠ACB=80°,
∴∠BAC=70°,
∵AD平分∠BAC,
∴∠DAC=35°,
∴∠ADC=65°,
∴∠E=25°;

(2)∠E=
1
2
(∠ACB-∠B).
设∠B=n°,∠ACB=m°,
∵AD平分∠BAC,
∴∠1=∠2=
1
2
∠BAC,
∵∠B+∠ACB+∠BAC=180°,
∵∠B=n°,∠ACB=m°,
∴∠CAB=(180-n-m)°,
∴∠BAD=
1
2
(180-n-m)°,
∴∠3=∠B+∠1=n°+
1
2
(180-n-m)°=90°+
1
2
n°-
1
2
m°,
∵PE⊥AD,
∴∠DPE=90°,
∴∠E=90°-(90°+
1
2
n°-
1
2
m°)=
1
2
(m-n)°=
1
2
(∠ACB-∠B).
点评:此题考查三角形的内角和定理以及角平分线的定义.掌握三角形的内角和为180°,以及角平分线的性质是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网