题目内容

7.设二次函数y=ax2+bx+c(a≠0)图象如图所示,经过点(-1,0),试判断a、b、c、a+b+c、a-b+c、b2-4ac的符号.

分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解答 解:∵抛物线开口向上,
∴a>0,
∵对称轴在y轴的左侧,
∴x=-$\frac{b}{2a}$<0,
∴b>0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∵当x=1时,y>0,
∴a+b+c>0,
∵当x=-1时,y=0,
∴a-b+c=0,
∵抛物线与x轴有两个交点,
∴b2-4ac>0.

点评 此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网