ÌâÄ¿ÄÚÈÝ
½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬ÎÒÃÇ¿ÉÒÔ½«x2-1ÊÓΪһ¸öÕûÌ壬
È»ºóÉèx2-1=y£¬Ôòy2=£¨x2-1£©2£¬
Ô·½³Ì»¯Îªy2-5y+4=0£¬
½â´Ë·½³Ì£¬µÃy1=1£¬y2=4£®µ±y=1ʱ£¬x2-1=1£¬x2=2£¬¡àx=¡À
£®
µ±y=4ʱ£¬x2-1=4£¬x2=5£¬¡àx=¡À
£®¡àÔ·½³ÌµÄ½âΪx1=-
£¬x2=
£¬x3=-
£¬x4=
£®
ÒÔÉÏ·½·¨¾Í½Ð»»Ôª·¨£¬´ïµ½Á˽µ´ÎµÄÄ¿µÄ£¬ÌåÏÖÁËת»¯µÄ˼Ï룮
£¨1£©ÔËÓÃÉÏÊö·½·¨½â·½³Ì£ºx4-3x2-4=0£»
£¨2£©¼ÈÈ»¿ÉÒÔ½«x21¿´×÷Ò»¸öÕûÌ壬ÄãÄÜÖ±½ÓÔËÓÃÒòʽ·Ö½â·¨½â£¨1£©Öеķ½³ÌÂð£¿
È»ºóÉèx2-1=y£¬Ôòy2=£¨x2-1£©2£¬
Ô·½³Ì»¯Îªy2-5y+4=0£¬
½â´Ë·½³Ì£¬µÃy1=1£¬y2=4£®µ±y=1ʱ£¬x2-1=1£¬x2=2£¬¡àx=¡À
| 2 |
µ±y=4ʱ£¬x2-1=4£¬x2=5£¬¡àx=¡À
| 5 |
| 2 |
| 2 |
| 5 |
| 5 |
ÒÔÉÏ·½·¨¾Í½Ð»»Ôª·¨£¬´ïµ½Á˽µ´ÎµÄÄ¿µÄ£¬ÌåÏÖÁËת»¯µÄ˼Ï룮
£¨1£©ÔËÓÃÉÏÊö·½·¨½â·½³Ì£ºx4-3x2-4=0£»
£¨2£©¼ÈÈ»¿ÉÒÔ½«x21¿´×÷Ò»¸öÕûÌ壬ÄãÄÜÖ±½ÓÔËÓÃÒòʽ·Ö½â·¨½â£¨1£©Öеķ½³ÌÂð£¿
¿¼µã£º»»Ôª·¨½âÒ»Ôª¶þ´Î·½³Ì
רÌ⣺ÔĶÁÐÍ
·ÖÎö£º£¨1£©x2=y£¬x4=y2 £®Ôò·½³Ì¼´¿É±äÐÎΪy2-3y-4=0£¬½â·½³Ì¼´¿ÉÇóµÃy¼´x2µÄÖµ£®
£¨2£©Ö±½ÓÔËÓÃÒòʽ·Ö½â·¨¼´¿ÉÇó½â£®
£¨2£©Ö±½ÓÔËÓÃÒòʽ·Ö½â·¨¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©x2=y£¬x4=y2£¬ÔòÔ·½³Ì¿É»¯Îªy2-3y-4=0£¬
½âµÃy1=-1£¬y2=4£®
µ±y=-1ʱ£¬x2=-1£¬Ô·½³ÌÎ޽⣻
µ±y=4ʱ£¬x2=4£¬x=¡À2£®
¡àÔ·½³ÌµÄ½âΪ£ºx1=2£¬x2=-2£®
£¨2£©x4-3x2-4=0£»
£¨x2-4£©£¨x2+1£©=0£¬
£¨x+2£©£¨x-2£©£¨x2+1£©=0£¬
¡àx+2=0»òx-2=0»òx2+1=0£¬
¡àx1=2£¬x2=-2£®x2+1=0£¨Î޽⣩£»
ËùÒÔ·½³ÌµÄ½âΪ£ºx1=2£¬x2=-2£®
½âµÃy1=-1£¬y2=4£®
µ±y=-1ʱ£¬x2=-1£¬Ô·½³ÌÎ޽⣻
µ±y=4ʱ£¬x2=4£¬x=¡À2£®
¡àÔ·½³ÌµÄ½âΪ£ºx1=2£¬x2=-2£®
£¨2£©x4-3x2-4=0£»
£¨x2-4£©£¨x2+1£©=0£¬
£¨x+2£©£¨x-2£©£¨x2+1£©=0£¬
¡àx+2=0»òx-2=0»òx2+1=0£¬
¡àx1=2£¬x2=-2£®x2+1=0£¨Î޽⣩£»
ËùÒÔ·½³ÌµÄ½âΪ£ºx1=2£¬x2=-2£®
µãÆÀ£º±¾Ì⿼²éÁË»»Ôª·¨½âÒ»Ôª¶þ´Î·½³Ì£®½âÒ»Ôª¶þ´Î·½³Ì³£Óõķ½·¨ÓÐÖ±½Ó¿ªÆ½·½·¨£¬Åä·½·¨£¬¹«Ê½·¨£¬Òòʽ·Ö½â·¨£¬Òª¸ù¾Ý·½³ÌµÄÌØµãÁé»îÑ¡ÓúÏÊʵķ½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÃæ¹ØÓÚxµÄ·½³ÌÖУºÒ»Ôª¶þ´Î·½³ÌµÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢Ùax2+x+2=0£»¢Ú3£¨x-9£©2-£¨x+1£©2=1£»¢Ûx+3=
£»¢Üx2-a=0£¨aΪÈÎÒâʵÊý£©£» ¢Ý
=x-1£®
¢Ùax2+x+2=0£»¢Ú3£¨x-9£©2-£¨x+1£©2=1£»¢Ûx+3=
| 1 |
| x |
| x+1 |
| A¡¢1 | B¡¢2 | C¡¢3 | D¡¢4 |
ÏÂÁÐÏÂÁеÈʽһ¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A¡¢
| ||||||
B¡¢
| ||||||
C¡¢
| ||||||
D¡¢
|
ÏÂÁÐÔËËãÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢a2•a3=a6 | ||
| B¡¢£¨-a2£©3=a6 | ||
C¡¢-3a-2=-
| ||
| D¡¢-a2-2a2=-3a2 |