题目内容

8.四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)
(1)如图1,若点G是线段CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,求证:△ABF≌△DAE.
(2)如图2,若点G是线段CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,判断线段EF与AF、BF的数量关系,并证明.
(3)若点G是直线BC上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,探究线段EF与AF、BF的数量关系.(请画图、不用证明、直接写答案)

分析 (1)根据正方形性质得出AB=AD,∠DAB=90°,根据垂直定义得出∠AED=∠AFB=90°,求出∠ADE=∠BAF,根据AAS证出两三角形全等即可;
(2)根据正方形性质得出AB=AD,∠DAB=90°,根据垂直定义得出∠AED=∠AFB=90°,求出∠ADE=∠BAF,根据AAS证出两三角形全等即可,根据全等得出AE=BF,代入即可求出答案;
(3)根据正方形性质得出AB=AD,∠DAB=90°,根据垂直定义得出∠AED=∠AFB=90°,求出∠ADE=∠BAF,根据AAS证出两三角形全等即可,结合G点可能在BC延长线上以及在线段BC上和在CB延长线上分别得出答案.

解答 (1)证明:如图1,∵四边形ABCD是正方形,
∴AB=AD,∠DAB=90°,
∴∠DAE+∠BAE=90°,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠AFB=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
∵在△ABF和△DAE中
$\left\{\begin{array}{l}{∠ADE=∠BAF}\\{∠AED=∠AFB}\\{AB=AD}\end{array}\right.$,
∴△ABF≌△DAE(AAS);

(2)解:EF=AF+BF,
理由是:如图2,∵四边形ABCD是正方形,
∴AB=AD,∠DAB=90°,
∴∠DAE+∠BAF=180°-90°=90°,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠AFB=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
∵在△ABF和△DAE中
$\left\{\begin{array}{l}{∠ADE=∠BAF}\\{∠AED=∠AFB}\\{AB=AD}\end{array}\right.$,
∴△ABF≌△DAE(AAS);
∴AE=BF,
∴EF=AE+AF=AF+BF;

(3)解:如图3所示:
∵BF⊥AG,DE⊥AG,
∴∠BFA=∠DEA=90°.
∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,
∴∠EAD=∠FBA.
在△ABF和△DAE中,
∵$\left\{\begin{array}{l}{∠BFA=∠DEA}\\{∠EAD=∠FBA}\\{AB=AD}\end{array}\right.$,
∴△ABF≌△DAE(AAS).
∴FB=AE.
∵AE=EF+AF,
∴EF=BF-AF.
如图4,∵DE⊥AG,BF⊥AG,
∴∠BFA=∠DEA=90°.
∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,
∴∠EAD=∠FBA.
在△ABF和△DAE中,
∵$\left\{\begin{array}{l}{∠BFA=∠DEA}\\{∠EAD=∠FBA}\\{AB=AD}\end{array}\right.$,
∴△ABF≌△DAE(AAS).
∴AE=BF.
∵AE+EF=AF,
∴EF=AF-BF;
如图5,∵DE⊥AG,BF⊥AG,
∴∠BFA=∠DEA=90°.
∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,
∴∠EAD=∠FBA.
在△ABF和△DAE中,
$\left\{\begin{array}{l}{∠BFA=∠DEA}\\{∠EAD=∠FBA}\\{AB=AD}\end{array}\right.$,
∴△ABF≌△DAE(AAS).
∴AE=BF.
∵AE+AF=EF,
∴EF=AF+BF.

点评 本题考查了四边形综合、全等三角形的性质和判定以及正方形的性质等知识,利用G点位置的不同分类讨论得出答案是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网