题目内容

18.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为NC∥AB;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=$\sqrt{2}$,试求EF的长.

分析 (1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到$\frac{AB}{AM}=\frac{AC}{AN}$,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出$\frac{BM}{CN}=\frac{AB}{AC}$,得到BM=2,CM=8,再根据勾股定理即可得到答案.

解答 解:(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM与△ACN中,$\left\{\begin{array}{l}{AB=AC}&{\;}\\{∠BAM=∠CAN}&{\;}\\{AM=AN}&{\;}\end{array}\right.$,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
故答案为:CN∥AB;

(2)∠ABC=∠ACN,理由如下:
∵$\frac{AB}{BC}=\frac{AM}{MN}$=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴$\frac{AB}{AM}=\frac{AC}{AN}$,
∵AB=BC,
∴∠BAC=$\frac{1}{2}$(180°-∠ABC),
∵AM=MN
∴∠MAN=$\frac{1}{2}$(180°-∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴∠ABC=∠ACN;

(3)如图3,连接AB,AN,
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC-∠MAC=∠MAN-∠MAC
即∠BAM=∠CAN,
∵$\frac{AB}{AC}=\frac{AM}{AN}$=$\sqrt{2}$,
∴$\frac{AB}{AM}=\frac{AC}{AN}$,
∴△ABM~△ACN
∴$\frac{BM}{CN}=\frac{AB}{AC}$,
∴$\frac{CN}{BM}=\frac{AC}{AB}$=cos45°=$\frac{\sqrt{2}}{2}$,
∴$\frac{\sqrt{2}}{BM}$=$\frac{\sqrt{2}}{2}$,
∴BM=2,∴CM=BC-BM=8,
在Rt△AMC,
AM=$\sqrt{A{C}^{2}+M{C}^{2}}$=$\sqrt{1{0}^{2}+{8}^{2}}$=2$\sqrt{41}$,
∴EF=AM=2$\sqrt{41}$.

点评 本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网