题目内容
5.计算:(1)(-1)2012+(-$\frac{1}{2}$)-2-(3.14-π)0
(2)122-123×121.
(3)4×105×5×106
(4)(6m2n-6m2n2-3m2)÷(-3m2)
分析 (1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;
(2)原式变形后,利用平方差公式计算即可得到结果;
(3)原式利用单项式乘以单项式法则计算即可得到结果;
(4)原式利用多项式除以单项式法则计算即可得到结果.
解答 解:(1)原式=1+4-1=4;
(2)原式=122-(122+1)×(122-1)=122-1222+1=-14761;
(3)原式=20×1011=2×1012;
(4)原式=-2n+2n2+1.
点评 此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
16.计算$\frac{m}{2m+1}+\frac{m+1}{2m+1}$的值是( )
| A. | 0 | B. | 2 | C. | -1 | D. | 1 |
15.阅读下列材料:
问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变).
解:设鸡、鸭、鹅的单价分别为x、y、z元.依题意得:$\left\{\begin{array}{l}{13x+5y+9z=925}\\{2x+4y+3z=320}\end{array}\right.$
上述方程组可变形为:$\left\{\begin{array}{l}{5(x+y+z)+4(2x+z)=925}\\{4(x+y+z)-(2x+z)=320}\end{array}\right.$
设x+y+z=a,2x+z=b,上述方程组又可化为:$\left\{\begin{array}{l}{5a+4b=925①}\\{4a-b=320②}\end{array}\right.$
①+4×②得:a=105
即x+y+z=105
答:第三次买鸡、鸭、鹅各一只共需105元.
阅读后,细心的你,可以解决下列问题:
(1)上述材料中a=105
(2)选择题:上述材料中的解答过程运用了A思想方法来指导解题.
A、整体 B、数形结合 C、分类讨论
(3)某校体育组购买体育用品甲、乙、丙、丁的件数和用钱金额如下表:
那么,购买每种体育用品各一件共需多少元?
问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变).
解:设鸡、鸭、鹅的单价分别为x、y、z元.依题意得:$\left\{\begin{array}{l}{13x+5y+9z=925}\\{2x+4y+3z=320}\end{array}\right.$
上述方程组可变形为:$\left\{\begin{array}{l}{5(x+y+z)+4(2x+z)=925}\\{4(x+y+z)-(2x+z)=320}\end{array}\right.$
设x+y+z=a,2x+z=b,上述方程组又可化为:$\left\{\begin{array}{l}{5a+4b=925①}\\{4a-b=320②}\end{array}\right.$
①+4×②得:a=105
即x+y+z=105
答:第三次买鸡、鸭、鹅各一只共需105元.
阅读后,细心的你,可以解决下列问题:
(1)上述材料中a=105
(2)选择题:上述材料中的解答过程运用了A思想方法来指导解题.
A、整体 B、数形结合 C、分类讨论
(3)某校体育组购买体育用品甲、乙、丙、丁的件数和用钱金额如下表:
| 品名次数 | 甲 | 乙 | 丙 | 丁 | 用钱金额(元) |
| 第一次购买件数 | 5 | 4 | 3 | 1 | 1882 |
| 第二次购买件数 | 9 | 7 | 5 | 1 | 2764 |