题目内容

12.如图,CD为⊙O的直径,弦AB交CD于点M,M是AB的中点,点P在$\widehat{AD}$上,PC与AB交于点N,∠PNA=60°,则∠PDC等于(  )
A.40°B.50°C.60°D.70°

分析 先根据圆周角定理得出∠P=90°,再由M是AB的中点可知CM⊥AB,由∠PNA=60°得出∠C的度数,进而可得出结论.

解答 解:∵CD为⊙O的直径,
∴∠P=90°.
∵M是AB的中点,
∴CM⊥AB.
∵∠PNA=60°,
∴∠C=90°-60°=30°,
∴∠PDC=90°-∠C=90°-30°=60°.
故选C.

点评 本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网