题目内容
17.①AD是∠BAC的平分线
②∠ADC=60°
③△ABD是等腰三角形
④点D到直线AB的距离等于CD的长度.
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据基本作图(作已知角的角平分线)可对①进行判断;利用AD为角平分线可得∠DAB=30°,则根据三角形外角性质可计算出∠ADC=∠DAB+∠B=60°,则可对③进行判断;根据角平分线的性质可对④进行判断.
解答 解:根据基本作图,所以①正确,
因为∠C=90°,∠B=30°,则∠BAC=60°,而AD平分∠BAC,则∠DAB=30°,所以∠ADC=∠DAB+∠B=60°,所以②正确;
因为∠DAB=∠B=30°,所以△ABD是等腰三角形,所有③正确;
因为AD平分∠BAC,所以点D到AB与AC的距离相等,而DC⊥AC,则点D到直线AB的距离等于CD的长度,所以④正确.
故选D.
点评 本题考查了作图-基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.
练习册系列答案
相关题目
14.
某公园一喷水池喷水时水流的路线呈抛物线(如图).若喷水时水流的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+1.25,则水池在喷水过程中水流的最大高度为( )
| A. | 1.25米 | B. | 2.25米 | C. | 2.5米 | D. | 3米 |
2.上数学课时,老师给出了一个一元二次方程x2+ax+b=0,并告诉学生,从数字1、3、5、中随机抽取一个作为a,从数字2、6中随机抽取一个作为b,组成不同的方程共m个,其中有实数解的方程共n个,则$\frac{n}{m}$=( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |