题目内容
4.已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连结EF,M为EF的中点,则CM的最小值为1.2.分析 连接CP,利用勾股定理逆定理可得∠ACB=90°,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,则CM最小,然后根据三角形的面积公式列出方程求解即可.
解答
解:如图,连接CP.
∵AC=3,BC=4,AB=5
∴∠ACB=90°,
∵PE⊥AC,PF⊥BC,∠C=90°,
∴四边形CFPE是矩形,
∴EF=CP,
由垂线段最短可得CP⊥AB时,线段EF的值最小,则CM最小,
此时,S△ABC=$\frac{1}{2}$BC•AC=$\frac{1}{2}$AB•CP,
即$\frac{1}{2}$×4×3=$\frac{1}{2}$×5•CP,
解得CP=2.4.
∴EF=2.4,
∵M为EF中点,
∴CM=1.2
故答案为:1.2.
点评 本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理逆定理,判断出CP⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.
练习册系列答案
相关题目
9.
如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是( )
| A. | ∠3=∠4 | B. | ∠D=∠DCE | C. | ∠1=∠2 | D. | ∠B=∠2 |