题目内容

7.如图,E、F是?ABCD对角线AC上两点,AE=CF.
(1)求证:△ABE≌△CDF;
(2)连结DE,BF,求证:四边形DEBF是平行四边形.

分析 (1)由平行四边形的性质得出∠BAE=∠DCF,由SAS证明△ABE≌△CDF即可;
(2)由全等三角形的性质得出BE=DF,同理:DE=BF,即可得出结论.

解答 (1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,
∴∠BAE=∠DCF,
在△ABE和△CDF中,$\left\{\begin{array}{l}{AE=CF}&{\;}\\{∠BAE=∠DCF}&{\;}\\{AB=CD}&{\;}\end{array}\right.$,
∴△ABE≌△CDF(SAS);

(2)证明:连接DE、BF,如图所示:
由(1)得:△ABE≌△CDF,
∴BE=DF,
同理:DE=BF,
∴四边形DEBF是平行四边形.

点评 本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网