题目内容

4.如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.
(1)如图(1),当折痕的另一端F在AB边上且AE=4时,求AF的长
(2)如图(2),当折痕的另一端F在AD边上且BG=10时,
①求证:EF=EG.
②求AF的长.

分析 (1)根据翻折的性质可得BF=EF,然后用AF表示出EF,在Rt△AEF中,利用勾股定理列出方程求解即可;
(2)①根据翻折的性质可得∠BGF=∠EGF,再根据两直线平行,内错角相等可得∠BGF=∠EFG,从而得到∠EGF=∠EFG,再根据等角对等边证明即可;
②根据翻折的性质可得EG=BG,HE=AB,FH=AF,然后在Rt△EFH中,利用勾股定理列式计算即可得解.

解答 (1)解:如图1,∵纸片折叠后顶点B落在边AD上的E点处,
∴BF=EF,
∵AB=8,
∴EF=8-AF,
在Rt△AEF中,AE2+AF2=EF2
即42+AF2=(8-AF)2
解得AF=3;

(2)如图2,
①证明:∵纸片折叠后顶点B落在边AD上的E点处,
∴∠BGF=∠EGF,
∵长方形纸片ABCD的边AD∥BC,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG;

②解:∵纸片折叠后顶点B落在边AD上的E点处,
∴EG=BG=10,HE=AB=8,FH=AF,
∴EF=EG=10,
在Rt△EFH中,FH=$\sqrt{E{F}^{2}-H{E}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴AF=FH=6.

点评 本题考查了翻折变换的性质,勾股定理的应用,相似三角形的判定与性质,熟记翻折前后两个图形能够重合得到相等的线段和角是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网