题目内容

7.方程组$\left\{\begin{array}{l}{x+2y=4}\\{x=y+1}\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$B.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$C.$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$D.$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$

分析 把x的值代入第一个方程可以求得y的值;然后求x的值.

解答 解:$\left\{\begin{array}{l}{x+2y=4①}\\{x=y+1②}\end{array}\right.$,
把②代入①得到:y+1+2y=4,
解得y=1,
把③代入②得到:x+1+1=2,
则原方程组的解为:$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$.
故选:B.

点评 本题考查了解二元一次方程组.这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网