题目内容
12.解三元一次方程组:(1)$\left\{\begin{array}{l}{x-y=-1}\\{y-z=-1}\\{x+y+z=6}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x-y+z=2}\\{x-2y-z=7}\\{x+y-2z=7}\end{array}\right.$.
分析 根据题意用加减消元法解方程组.
解答 解:(1)$\left\{\begin{array}{l}{x-y=-1}\\{y-z=-1}\\{x+y+z=6}\end{array}\right.$ $\underset{\stackrel{①}{②}}{③}$,
①+②,得x-z=-2 ④,
①+③,得2x+z=5 ⑤,
由方程④⑤组成二元一次方程组$\left\{\begin{array}{l}{x-z=-2}\\{2x+z=5}\end{array}\right.$,
解这个二元一次方程组,得$\left\{\begin{array}{l}{x=1}\\{z=3}\end{array}\right.$,
把x=1代入方程①,得1-y=-1,
解,得y=2,
∴原方程组的解是$\left\{\begin{array}{l}{x=1}\\{y=2}\\{z=3}\end{array}\right.$.
(2)$\left\{\begin{array}{l}{2x-y+z=2}\\{x-2y-z=7}\\{x+y-2z=7}\end{array}\right.$.$\underset{\stackrel{①}{②}}{③}$,
①+②,得x-y=3 ③,
②×2-③,得x-5y=7 ④,
③-④,得4y=-4,
解,得y=-1,
把y=-1分别代入③和②,得x+1=3,-1-z=-1
解,得x=2,z=0,
∴原方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\\{z=0}\end{array}\right.$.
点评 本题考查了解三元一次方程组的应用,解此题的关键是能把三元一次方程组转化成二元一次方程组,难度适中.
| A. | $\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$ |
| A. | B. | C. | D. |