题目内容
东海小商品市场一经营者将每件进价为80元的某种小商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种小商品单价每降低1元,其销量可增加10件.
(1)该经营者经营这种商品原来一天可获利润 元.
(2)若该经营者经营该商品一天要获利润2090元,则每件商品应降价多少元?
(1)该经营者经营这种商品原来一天可获利润
(2)若该经营者经营该商品一天要获利润2090元,则每件商品应降价多少元?
考点:一元二次方程的应用
专题:销售问题
分析:(1)不降价时,利润=不降价时商品的单件利润×商品的件数.
(2)可根据:降价后的单件利润×降价后销售的商品的件数=2090,来列出方程,求出未知数的值,
(2)可根据:降价后的单件利润×降价后销售的商品的件数=2090,来列出方程,求出未知数的值,
解答:解:(1)若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元).
故答案是:2000;
(2)①设该商品每件降价x元,依题意,得
(100-80-x)(100+10x)=2090,
即x2-10x+9=0.
解得x1=1,x2=9.
答:每件商品降价1元或9元.
故答案是:2000;
(2)①设该商品每件降价x元,依题意,得
(100-80-x)(100+10x)=2090,
即x2-10x+9=0.
解得x1=1,x2=9.
答:每件商品降价1元或9元.
点评:此题主要考查了二次函数的应用以及一元二次方程的应用,注意单件利润×销售的商品的件数=总利润.
练习册系列答案
相关题目