题目内容

如图,在△ABC中,AB=AC=6,D是BC上的点,DF∥AB交AC于点F,DE∥AC交AB于E,那么四边形AFDE的周长为(  )
A、6B、12C、24D、48
考点:平行四边形的判定与性质,等腰三角形的判定与性质
专题:
分析:由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明?AFDE的周长等于AB+AC.
解答:解:∵DE∥AB,DF∥AC,
则四边形AFDE是平行四边形,
∠B=∠EDC,∠FDB=∠C
∵AB=AC,∴∠B=∠C,
∴∠B=∠FDB,∠C=∠EDF
∴BF=FD,DE=EC,
所以:?AFDE的周长等于AB+AC=12.
故选B.
点评:本题考查了平行四边形的性质,以及等腰三角形的判定和性质,根据平行四边形的性质,找出对应相等的边,利用等腰三角形的性质把四边形周长转化为已知的长度去解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网