题目内容

12.已知∠BAC=90°,半径为r的圆O与两条直角边AB,AC都相切,设AB=a(a>r),BE与圆O相切于点E.现给出下列命题:①当∠ABE=60°时,BE=$\sqrt{3}r$; ②当∠ABE=90°时,BE=r;则下列判断正确的是(  )
A.命题①是真命题,命题②是假命题B.命题①②都是真命题
C.命题①是假命题,命题②是真命题D.命题①②都是假命题

分析 ①如图1,根据切线的性质得出BE=BF,OE⊥BE,OF⊥AB,进一步求得RT△OBF≌RT△OBE,得出∠OBE=∠OBF=$\frac{1}{2}$∠ABE=30°,解直角三角形即可求得BE=$\sqrt{3}r$;
②根据切线的性质得出BE=BF,OE⊥BE,OF⊥AB,根据题意证得四边形BEDF是正方形,得出BE=r.

解答 解:①如图1,∵AB和BE是圆O的切线,
∴BE=BF,OE⊥BE,OF⊥AB,
在RT△OBF和RT△OBE中,
$\left\{\begin{array}{l}{BE=BF}\\{OB=OB}\end{array}\right.$,
∴RT△OBF≌RT△OBE(HL),
∴∠OBE=∠OBF=$\frac{1}{2}$∠ABE=30°,
∴BE=cot30°•OE=$\sqrt{3}$r;
②如图2,∵AB和BE是圆O的切线,
∴BE=BF,OE⊥BE,OF⊥AB,
∵∠ABE=90°,
∴四边形BEDF是正方形,
∴BE=OE
∴BE=r.
故命题①②都是真命题.
故选B.

点评 本题考查了切线的性质,命题和定理,三角形全等的判定和性质,正方形的判定和性质,切线长定理的应用是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网