ÌâÄ¿ÄÚÈÝ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy1=x+mÓëË«ÇúÏßy2=$\frac{k}{x}$½»ÓÚµãA¡¢B£¬ÒÑÖªµãA¡¢BµÄºá×ø±êΪ2ºÍ-1£®
£¨1£©ÇókµÄÖµ¼°Ö±ÏßÓëxÖáµÄ½»µã×ø±ê£»
£¨2£©Ö±Ïßy=2x½»Ë«ÇúÏßy=$\frac{k}{x}$ÓÚµãC¡¢D£¨µãCÔÚµÚÒ»ÏóÏÞ£©ÇóµãC¡¢DµÄ×ø±ê£»
£¨3£©ÉèÖ±Ïßy=ax+bÓëË«ÇúÏßy=$\frac{k}{x}$£¨ak¡Ù0£©µÄÁ½¸ö½»µãµÄºá×ø±êΪx1¡¢x2£¬Ö±ÏßÓë  xÖá½»µãµÄºá×ø±êΪx0£¬½áºÏ£¨1£©¡¢£¨2£©ÖеĽá¹û£¬²ÂÏëx1¡¢x2¡¢x0Ö®¼äµÄµÈÁ¿¹ØÏµ²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨¼´¿É½â¾ö£®
£¨2£©½â·½³Ì×é$\left\{\begin{array}{l}{y=2x}\\{y=\frac{2}{x}}\end{array}\right.$¼´¿É½âµÃC¡¢D×ø±ê£®
£¨3£©½áÂÛ£ºx1+x2=x0£¬ÓÉ$\left\{\begin{array}{l}{y=ax+b}\\{y=\frac{k}{a}}\end{array}\right.$ÏûÈ¥yµÃ£ºax2+bx-k=0£¬ËùÒÔx1+x2=-$\frac{b}{a}$£¬ÓÖÖ±Ïßy=ax+bÓëxÖáµÄ½»µãΪ£¨-$\frac{b}{a}$£¬0£©£¬ËùÒÔx0=-$\frac{b}{a}$£¬ËùÒÔx1+x2=x0£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣺$\left\{\begin{array}{l}{2+m=\frac{k}{2}}\\{-1+m=-k}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{m=-1}\\{k=2}\end{array}\right.$£¬
¡ày1=x-1£¬y2=$\frac{2}{x}$£¬
¡àk=2£¬Ö±Ïßy1=x-1ÓëxÖáµÄ½»µãΪ£¨1£¬0£©£®
£¨2£©ÓÉ$\left\{\begin{array}{l}{y=2x}\\{y=\frac{2}{x}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.»ò\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$£¬
ËùÒÔµãC£¨1£¬2£©£¬D£¨-1£¬-2£©£®
£¨3£©½áÂÛ£ºx1+x2=x0£¬
ÀíÓÉ£ºÓÉ$\left\{\begin{array}{l}{y=ax+b}\\{y=\frac{k}{a}}\end{array}\right.$ÏûÈ¥yµÃ£ºax2+bx-k=0£¬
¡ßÖ±Ïßy=ax+bÓëË«ÇúÏßy=$\frac{k}{x}$£¨ak¡Ù0£©µÄÁ½¸ö½»µãµÄºá×ø±êΪx1¡¢x2£¬
¡àx1+x2=-$\frac{b}{a}$£¬
Ö±Ïßy=ax+bÓëxÖáµÄ½»µãΪ£¨-$\frac{b}{a}$£¬0£©£¬
¡àx0=-$\frac{b}{a}$£¬
¡àx1+x2=x0£®

µãÆÀ ±¾Ì⿼²é·´±ÈÀýº¯ÊýºÍÒ»´Îº¯ÊýµÄÓйØÖªÊ¶£¬½âÌâµÄ¹Ø¼üÊÇÀí½â·½³Ì×é½âÓë½»µã×ø±êµÄ¹ØÏµ£¬ÌåÏÖÊýÐνáºÏµÄ˼Ï룬ÊôÓÚÖп¼³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø