ÌâÄ¿ÄÚÈÝ
18£®£¨1£©ÇóÒ»´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©Èô A1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬A3£¨x3£¬y3£©ÎªË«ÇúÏßÉϵÄÈý¸öµã£¬ÇÒx1£¼x2£¼0£¼x3£¬ÇëÖ±½Óд³öy1¡¢y2¡¢y3´óС¹ØÏµ£»
£¨3£©Çó¡÷OABµÄÃæè×£»
£¨4£©Ö±½Óд³öÒ»´Îº¯ÊýÖµ´óÓÚ·´±ÈÀýº¯ÊýÖµµÄ×Ô±äÖÃxµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©°ÑA£¨1£¬4£©´úÈëy=$\frac{k}{x}$µÃk=4£¬µÃµ½$\left\{\begin{array}{l}{k=1}\\{b=3}\end{array}\right.$£¬ÓÚÊǵõ½½áÂÛ£»
£¨2£©¸ù¾Ý·´±ÈÀýµÄÐÔÖʼ´¿ÉµÃµ½½áÂÛ£»
£¨3£©¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃµ½½áÂÛ£»
£¨4£©ÓÉͼÏ󼴿ɵõ½½áÂÛ£®
½â´ð ½â£º£¨1£©°ÑA£¨1£¬4£©´úÈëy=$\frac{k}{x}$µÃk=4£¬
¡à·´±ÈÀýº¯ÊýµÄ½âÎöʽΪ£ºy=$\frac{4}{x}$£¬
¡àµãB£¨-4£¬-1£©£¬
°ÑA£¨1£¬4£©¡¢B£¨-4£¬-1£©´úÈë$\left\{\begin{array}{l}{4=k+b}\\{-1=-4k+b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=1}\\{b=3}\end{array}\right.$£¬
¡àÒ»´Îº¯ÊýµÄ½âÎöʽΪy=x+3£»
£¨2£©¡ßA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬A3£¨x3£¬y3£©ÎªË«ÇúÏßÉϵÄÈý¸öµã£¬ÇÒx1£¼x2£¼0£¼x3£¬
¡ày3£¾y1£¾y2£»
£¨3£©S¡÷AOB=$\frac{1}{2}$¡Á3¡Á1+$\frac{1}{2}¡Á$3¡Á4=$\frac{15}{2}$£»
£¨4£©ÓÉͼÏóÖªÒ»´Îº¯ÊýÖµ´óÓÚ·´±ÈÀýº¯ÊýÖµµÄ×Ô±äÖÃxµÄȡֵ·¶Î§ÊÇ-4£¼x£¼0»òx£¾1£®
µãÆÀ ±¾Ì⿼²éÁ˹´¹É¶¨Àí£¬Óôý¶¨ÏµÊý·¨Çó·´±ÈÀýº¯ÊýºÍÒ»´Îº¯ÊýµÄ½âÎöʽ£¬Ò»´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ½»µãÎÊÌâµÄÓ¦Óã¬ÌâÄ¿ÊÇÒ»µÀ±È½ÏµäÐ͵ÄÌâÄ¿£¬ÄѶÈÊÊÖУ®
| A£® | $\frac{x}{3}$ | B£® | $\frac{x}{x+2}$ | C£® | $\frac{x+1}{2}$ | D£® | $\frac{x}{3}$+y |