ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ÇóÖ±ÏßOBµÄº¯Êý±í´ïʽ£»
£¨2£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨3£©ÈôPΪÅ×ÎïÏßÉÏλÓÚµÚÒ»ÏóÏÞÄÚµÄÒ»¸ö¶¯µã£¬ÒÔP£¬O£¬A£¬EΪ¶¥µãµÄËıßÐÎÃæ»ý¼Ç×÷S£¬ÔòSÈ¡ºÎֵʱ£¬ÏàÓ¦µÄµãPÓÐÇÒÖ»ÓÐ3¸ö£®
·ÖÎö £¨1£©ÀûÓÃÔ²ÖܽǶ¨Àí£¬Ö±¾¶Ëù¶ÔµÄÔ²ÖܽǵÈÓÚ90¡ã£¬ÓÚÊǵõ½OBÊǵĴ¹Ö±Æ½·ÖÏߣ¬ÇóµÃµãB£¬¼´¿ÉµÃµ½OBËùÔÚÖ±ÏߵĽâÎöʽ£»
£¨2£©ÓÉOBËùÔÚÖ±ÏߵĽâÎöʽµÃ³öµãEµÄ×ø±ê£¬Óôý¶¨ÏµÊý·¨µÃÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÀûÓã¨2£©µÄ½áÂÛÒ׵õãPµÄ×ø±ê£¬·ÖÀàÌÖÂÛ£º¢ÙÈôµãPÔÚCDµÄ×ó²à£¬ÑÓ³¤OP½»CDÓÚQ£¬ÈçÓÒͼ2£¬Ò×µÃOPËùÔÚÖ±Ïߵĺ¯Êý¹ØÏµÊ½£¬±íʾ³öQµãµÄ×Ý×ø±ê£¬µÃQEµÄ³¤£¬±íʾ³öËıßÐÎPOAEµÄÃæ»ý£»¢ÚÈôµãPÔÚCDµÄÓҲ࣬ÑÓ³¤AP½»CDÓÚQ£¬ÈçÓÒͼ3£¬Ò×µÃAPËùÔÚÖ±ÏߵĽâÎöʽ£¬´Ó¶øÇóµÃQµãµÄ×Ý×ø±ê£¬µÃQEÇóµÃËıßÐÎPOAEµÄÃæ»ý£¬µ±PÔÚCDÓÒ²àʱ£¬ËıßÐÎPOAEµÄÃæ»ý×î´óֵΪ16£¬´ËʱµãPµÄλÖþÍÒ»¸ö£¬Áî-$\frac{3}{8}$p2+$\frac{9}{4}$p+15=16£¬½âµÃp£¬µÃ³ö½áÂÛ£®
½â´ð
½â£º£¨1£©Á¬½ÓOC£¬Èçͼ1Ëùʾ£¬
¡ßOAÊÇ¡ÑOµÄÖ±¾¶£¬
¡à¡ÏOBA=90¡ã£¬
¡àOB¡ÍAC£¬
ÓÖ¡ßAB=BC£¬
¡àOBÊÇACµÄ´¹Ö±Æ½·ÖÏߣ¬
¡àOC=OA=10£¬
ÔÚRt¡÷OCDÖУ¬OC=10£¬CD=8£¬
¡àOD=6£¬
¡àC£¨6£¬8£©£¬B£¨8£¬4£©
¡àOBËùÔÚÖ±Ïߵĺ¯Êý¹ØÏµÎªy=$\frac{1}{2}$x£¬
£¨2£©¡ßEµãµÄºá×ø±êΪ6£¬
¡àEµã×Ý×ø±êΪ3£¬
¼´E£¨6£¬3£©£¬
Å×ÎïÏß¹ýO£¨0£¬0£©£¬E£¨6£¬3£©£¬A£¨10£¬0£©£¬
¡àÉè´ËÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½Îªy=ax£¨x-10£©£¬°ÑEµã×ø±ê´úÈëµÃ£º
3=6a£¨6-10£©£¬
½âµÃa=-$\frac{1}{8}$£®
¡à´ËÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½Îªy=-$\frac{1}{8}$x£¨x-10£©£¬¼´y=-$\frac{1}{8}$x2+$\frac{5}{4}$x£»
£¨3£©ÉèµãP£¨p£¬-$\frac{1}{8}$p2+$\frac{5}{4}$p£©£¬
¢ÙÈôµãPÔÚCDµÄ×ó²à£¬ÑÓ³¤OP½»CDÓÚQ£¬ÈçÓÒͼ2£¬
OPËùÔÚÖ±Ïߺ¯Êý¹ØÏµÊ½Îª£ºy=£¨-$\frac{1}{8}$p+$\frac{5}{4}$£©x
¡àµ±x=6ʱ£¬y=-$\frac{3}{4}$p+$\frac{15}{2}$£¬¼´Qµã×Ý×ø±êΪ-$\frac{3}{4}$p+$\frac{15}{2}$£¬
¡àQE=-$\frac{3}{4}$p+$\frac{15}{2}$-3=-$\frac{3}{4}$p+$\frac{9}{2}$£¬
SËıßÐÎPOAE
=S¡÷OAE+S¡÷OPE
=S¡÷OAE+S¡÷OQE-S¡÷PQE
=$\frac{1}{2}$•OA•DE+$\frac{1}{2}$QE•OD-$\frac{1}{2}$•QE•Px•
=$\frac{1}{2}$¡Á10¡Á3+$\frac{1}{2}$¡Á£¨-$\frac{3}{4}$p+$\frac{9}{2}$£©¡Á6-$\frac{1}{2}$•£¨-$\frac{3}{4}$p+$\frac{9}{2}$£©•£¨6-p£©£¬
=-$\frac{3}{8}$p2+$\frac{9}{4}$p+15£¬
¢ÚÈôµãPÔÚCDµÄÓҲ࣬ÑÓ³¤AP½»CDÓÚQ£¬ÈçÓÒͼ3£¬![]()
P£¨p£¬-$\frac{1}{8}$p2+$\frac{5}{4}$p£©£¬A£¨10£¬0£©
¡àÉèAPËùÔÚÖ±Ïß·½³ÌΪ£ºy=kx+b£¬°ÑPºÍA×ø±ê´úÈëµÃ£¬
$\left\{\begin{array}{l}{10k+b=0}\\{pk+b=-\frac{1}{8}{p}^{2}+\frac{5}{4}p}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{8}p}\\{b=\frac{5}{4}p}\end{array}\right.$£®
¡àAPËùÔÚÖ±Ïß·½³ÌΪ£ºy=$\frac{1}{8}$x+$\frac{5}{4}$£¬
¡àµ±x=6ʱ£¬y=$\frac{1}{8}$•6+$\frac{5}{4}$=$\frac{1}{2}$P£¬¼´Qµã×Ý×ø±êΪ$\frac{1}{2}$P£¬
¡àQE=$\frac{1}{2}$P-3£¬
¡àSËıßÐÎPOAE
=S¡÷OAE+S¡÷APE
=S¡÷OAE+S¡÷AQE-S¡÷PQE
=$\frac{1}{2}$•OA•DE+$\frac{1}{2}$•QE•DA-$\frac{1}{2}$•QE•£¨Px-6£©
=$\frac{1}{2}$¡Á10¡Á3+$\frac{1}{2}$•QE•£¨DA-Px+6£©
=15+$\frac{1}{2}$•£¨$\frac{1}{2}$p-3£©•£¨10-p£©
=$\frac{1}{4}$p2+4p
=-$\frac{1}{4}$£¨p-8£©2+16£¬
¡àµ±PÔÚCDÓÒ²àʱ£¬ËıßÐÎPOAEµÄÃæ»ý×î´óֵΪ16£¬´ËʱµãPµÄλÖþÍÒ»¸ö£¬
Áî-$\frac{3}{8}$p2+$\frac{9}{4}$p+15=16£¬½âµÃ£¬p=3¡À$\frac{\sqrt{57}}{3}$£¬
¡àµ±PÔÚCD×ó²àʱ£¬ËıßÐÎPOAEµÄÃæ»ýµÈÓÚ16µÄ¶ÔÓ¦PµÄλÖÃÓÐÁ½¸ö£¬
×ÛÉÏËùÖª£¬ÒÔP¡¢O¡¢A¡¢EΪ¶¥µãµÄËıßÐÎÃæ»ýSµÈÓÚ16ʱ£¬ÏàÓ¦µÄµãPÓÐÇÒÖ»ÓÐ3¸ö£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÔ²ÖܽǶ¨Àí£¬´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýºÍ¶þ´Îº¯ÊýµÄ½âÎöʽ£¬ËıßÐκÍÈý½ÇÐεÄÃæ»ýµÄ¼ÆË㣬½â¾öÕâÀàÎÊÌâ¹Ø¼üÊÇÉÆÓÚ½«º¯ÊýÎÊÌâת»¯Îª·½³ÌÎÊÌ⣬ȻºóÊýÐνáºÏ½â¾öÎÊÌ⣮
| A£® | 3 | B£® | 4 | C£® | 3»ò5 | D£® | 3»ò4 |
| A£® | -$\frac{1}{4}$ | B£® | $\frac{1}{4}$ | C£® | -4 | D£® | 4 |