题目内容
14.(1)求证:四边形AECF是平行四边形;
(2)若OA=OD,则四边形ABCD是什么特殊四边形?请证明你的结论.
分析 (1)根据平行线的性质推出∠AFO=∠CEO,∠FAO=∠ECO,求出OE=OF,证△AOF≌△COE,推出AF=CE,根据平行四边形的判定推出即可;
(2)根据全等得出OA=OC,求出AC=BD,再根据平行四边形和矩形的判定推出即可.
解答 (1)证明:∵AF∥CE,
∴∠AFO=∠CEO,∠FAO=∠ECO,
∵O为BD的中点,即OB=OD,BE=DF,
∴OB-BE=OD-DF,即OE=OF,
在△AOF和△COE中
$\left\{\begin{array}{l}{∠AFO=∠CEO}\\{∠FAO=∠ECO}\\{OE=OF}\end{array}\right.$
∴△AOF≌△COE(AAS),
∴AF=CE,
∵AF∥CE,
∴四边形AECF是平行四边形;
(2)若OA=OD,则四边形ABCD是矩形,
证明:∵△AOF≌△COE,
∴OA=OC,
∵OB=OD,
∴四边形ABCD是平行四边形.
∵OA=OD,∴OA=OB=OC=OD,即BD=AC,
∴四边形ABCD为矩形.
点评 本题考查了平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,注意:对角线相等的平行四边形是矩形.
练习册系列答案
相关题目
2.
如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是( )
| A. | 6月1日 | B. | 6月2日 | C. | 6月3日 | D. | 6月5日 |