题目内容

6.已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是2<d≤2$\sqrt{2}$.

分析 根据垂线段最短,A、O重合时,点P到y轴的距离最小,为正方形ABCD边长的一半,OA=OD时点P到y轴的距离最大,为PD的长度,即可得解.

解答 解:当A、O重合时,点P到y轴的距离最小,
d=$\frac{1}{2}$×4=2,
当OA=OD时,点P到y轴的距离最大,d=PD=2$\sqrt{2}$,
∵点A,D都不与原点重合,
∴2<d≤2$\sqrt{2}$,
故答案为2<d≤2$\sqrt{2}$.

点评 本题考查了正方形的性质,坐标与图形的性质,全等三角形的判定与性质,角平分线的判定,(2)作辅助线构造出全等三角形是解题的关键,(2)根据垂线段最短判断出最小与最大值的情况是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网