ÌâÄ¿ÄÚÈÝ
14£®| A£® | $\frac{1}{2}$»ò$-\frac{1}{2}$ | B£® | $\frac{1}{3}$»ò$-\frac{1}{3}$ | C£® | $\frac{3}{4}$»ò$-\frac{3}{4}$ | D£® | $\frac{2}{3}$»ò$-\frac{2}{3}$ |
·ÖÎö ·ÖÀàÌÖÂÛ£ºµãPÔÚOAÉϺ͵ãPÔÚOBÉÏÁ½ÖÖÇé¿ö£®¸ù¾ÝÌâÒâÁгö±ÈÀý¹ØÏµÊ½£¬Ö±½Ó½â´ð¼´¿ÉµÃ³öxµÃ³öÖµ£®
½â´ð ½â£ºÈçͼ£¬¡ßABµÄÖеãÓëÔµãOÖØºÏ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=2£¬AD=1£¬![]()
¡àA£¨-1£¬0£©£¬B£¨1£¬0£©£¬C£¨1£¬1£©£®
µ±µãPÔÚOBÉÏʱ£®Ò×ÇóG£¨$\frac{x}{2}$£¬1£©
¡ß¹ýµãQ¡¢PµÄÖ±Ïß½«¾ØÐÎABCDµÄÖܳ¤·Ö³É2£º1Á½²¿·Ö£¬
ÔòAP+AD+DG=3+$\frac{3}{2}$x£¬CG+BC+BP=3-$\frac{3}{2}$x£¬
ÓÉÌâÒâ¿ÉµÃ£º3+$\frac{3}{2}$x=2£¨3-$\frac{3}{2}$x£©£¬
½âµÃx=$\frac{2}{3}$£®
ÓɶԳÆÐÔ¿ÉÇóµ±µãPÔÚOAÉÏʱ£¬x=-$\frac{2}{3}$£®
¹ÊÑ¡D£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÌ⣬½â´ðҪעÒâÊýÐνáºÏ˼ÏëµÄÔËÓã¬ÊǸ÷µØÖп¼µÄÈȵ㣬ͬѧÃÇÒª¼ÓǿѵÁ·£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®
Èçͼ£¬¡÷ABCÖУ¬¡ÏBAC=60¡ã£¬AB=2AC£¬µãPÔÚ¡÷ABCÄÚ£¬ÇÒPA=$\sqrt{3}$£¬PB=5£¬PC=2£¬Ôò¡÷ABCµÄÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 3+$\frac{7}{2}$$\sqrt{3}$ | B£® | 3+$\frac{5}{2}$$\sqrt{3}$ | C£® | 3+$\sqrt{3}$ | D£® | 3+$\frac{1}{2}$$\sqrt{3}$ |
4£®Ñ§Ï°ÍêÒ»´Îº¯Êýºó£¬Ð¡ÈÙÓöµ½¹ýÕâÑùµÄÒ»¸öÐÂÓ±µÄº¯Êý£ºy=|x-1|£¬Ð¡ÈÙ¸ù¾ÝѧУº¯ÊýµÄ¾Ñ飬¶Ôº¯Êýy=|x-1|µÄͼÏóÓëÐÔÖʽøÐÐÁË̽¾¿£®ÏÂÃæÊÇСÈÙµÄ̽¾¿¹ý³Ì£¬Çë²¹³äÍê³É£º
£¨1£©ÁÐ±í£ºÏ±íÊÇyÓëxµÄ¼¸×é¶ÔÓ¦Öµ£¬Çë²¹³äÍêÕû£®
£¨2£©ÃèµãÁ¬ÏߣºÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇëÃè³öÒÔÉϱíÖи÷¶Ô¶ÔÓ¦ÖµÎª×ø±êµÄµã£¬»³ö¸Ãº¯ÊýµÄͼÏó£»
£¨3£©½øÒ»²½Ì½¾¿·¢ÏÖ£¬¸Ãº¯ÊýͼÏóµÄ×îµÍµãµÄ×ø±êÊÇ£¨1£¬0£©£¬½áºÏº¯ÊýµÄͼÏó£¬Ð´³ö¸Ãº¯ÊýµÄÆäËûÐÔÖÊ£¨Ò»Ìõ¼´¿É£©£ºµ±x£¼0ʱ£¬yËæxµÄÔö´ó¶ø¼õС£®
£¨1£©ÁÐ±í£ºÏ±íÊÇyÓëxµÄ¼¸×é¶ÔÓ¦Öµ£¬Çë²¹³äÍêÕû£®
| x | ¡ | -3 | -2 | -1 | 0 | 1 | 2 | 3 | ¡ |
| y | ¡ | 4 | 3 | 2 | 1 | 0 | 1 | 2 | ¡ |
£¨3£©½øÒ»²½Ì½¾¿·¢ÏÖ£¬¸Ãº¯ÊýͼÏóµÄ×îµÍµãµÄ×ø±êÊÇ£¨1£¬0£©£¬½áºÏº¯ÊýµÄͼÏó£¬Ð´³ö¸Ãº¯ÊýµÄÆäËûÐÔÖÊ£¨Ò»Ìõ¼´¿É£©£ºµ±x£¼0ʱ£¬yËæxµÄÔö´ó¶ø¼õС£®