题目内容

如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC为6m,则这两棵树之间的坡面AB的长为(  )

A. 12m B. 3m C. 4m D. 12m

C 【解析】试题分析:在Rt△ABC中,cos∠A=cos30°=,则AB=m,故选C.
练习册系列答案
相关题目

如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是(  )

A. y=x+1 B. y=x-1 C. y=x2-x+1 D. y=x2-x-1

C 【解析】试题分析:易证△ABE∽△ECF,根据相似三角形对应边的比相等即可求解. 【解析】 ∵∠BAE和∠EFC都是∠AEB的余角. ∴∠BAE=∠FEC. ∴△ABE∽△ECF 那么AB:EC=BE:CF, ∵AB=1,BE=x,EC=1﹣x,CF=1﹣y. ∴AB•CF=EC•BE, 即1×(1﹣y)=(1﹣x)x. 化简得:y=x2...

小汽车刹车距离s(m)与速度v(km/h)之间的函数关系式为s=v2,一辆小汽车速度为100km/h,在前方80m处停放一辆故障车,此时刹车_______(填“会”或“不会”)有危险.

会 【解析】试题分析:由题意把代入即可求得s的值,与80比较即可判断. 在中,当时, 则此时刹车会有危险.

如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,求该斜坡的坡比

【解析】试题分析:首先根据AB和AC的长度以及勾股定理得出BC的长度,最后根据坡比的计算法则得出答案. 试题解析:∵某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米, ∴水平距离BC= =6(m), 则该斜坡的坡比是: .

如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了________米.

1000 【解析】试题分析:过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000

如图,一个小球由地面沿着坡度i=1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( ).

A.5m B.m C.4m D.2m

D. 【解析】 试题分析:画出草图,根据题意用未知数表示相应的线段的长度,再运用勾股定理列方程求解即可. 试题解析:如图: Rt△ABC中,tanA=,AB=10. 设BC=x,则AC=2x, ∴x2+(2x)2=102, 解得,(负值舍去). 即此时小球距离地面的高度为米. 故选D.

已知:如图,二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).

(1)写出该函数图象的对称轴;

(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?请说明理由.

(1)直线x=1 (2)点A′为抛物线y=﹣(x﹣1)2+的顶点 【解析】 试题分析:(1)把已知点O、A代入函数的解析式可求出h的值h=1,及a=,然后根据二次函数的顶点式的特点判断出对称轴; (2)由线段OA绕点O逆时针旋转60°到OA′,可知OA′=OA=2,∠A′OA=60°,如图,作A′B⊥x轴于点B,根据直角三角形的特点可知sin60°=,cos60°=,因此可求得A...

已知a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值。

-16 【解析】 试题分析:先根据分组分解法分解多项式4a2b+4ab2-4a-4b,再整体代入求值即可得到结果. 当a+b=-4,ab=2时, 4a2b+4ab2-4a-4b=4ab(a+b)-4(a+b)=4(a+b)(ab-1)=-16.

已知抛物线

(1)用配方法求它的顶点坐标、对称轴;

(2)x取何值时,y随x增大而减小?

(3)x取何值时,抛物线在x轴上方?

(1)顶点坐标为(-1, ),对称轴为:x= -1;(2)x﹥-1时,随增大而减小 ;(3)-4﹤x﹤2时,抛物线在x轴上方. 【解析】试题分析:(1)用配方法时,先提二次项系数,再配方,写成顶点式,根据顶点式的坐标特点求顶点坐标及对称轴; (2)对称轴是x=-1,开口向下,根据对称轴及开口方向确定函数的增减性; (3)令y=0,确定函数图象与x轴的交点,结合开口方向判断x的取值...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网