题目内容

如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了________米.

1000 【解析】试题分析:过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000
练习册系列答案
相关题目

小敏在某次投篮中,球的运动路线是抛物线y=﹣x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离L是(  )

A. 3.5m B. 4m C. 4.5m D. 4.6m

B 【解析】试题分析:如图,把C点纵坐标y=3.05代入y=x2+3.5中得: x=±1.5(舍去负值), 即OB=1.5, 所以L=AB=2.5+1.5=4米,故选B.

如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1、A2、A3…An,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1、M2、M3、…Mn,…都在直线L:y=x上;②抛物线依次经过点A1、A2、A3…An、….则顶点M2014的坐标为______________.

(4027,4027) 【解析】试题解析:M1(a1,a 1)是抛物线y1=(x- a 1)2+a1的顶点, 抛物线y=x2与抛物线y1=(x- a 1)2+ a 1相交于A1, 得x2=(x- a 1)2+ a 1, 即2a1x= a 12+ a 1, x=(a1+1). ∵x为整数点 ∴a1=1, M1(1,1); M2(a2,a 2)是抛...

抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x-1)2-4,则b,c的值分别为( )

A. b=2,c=-6 B. b=2,c=0

C. b=-6,c=8 D. b=-6,c=2

B 【解析】试题分析:先确定出平移后的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移前的抛物线的顶点坐标,然后写出平移前的抛物线的顶点式形式,然后整理成一般形式,即可得到b、c的值. 【解析】 函数y=(x﹣1)2﹣4的顶点坐标为(1,﹣4), ∵是向右平移2个单位,再向下平移3个单位得到, ∴1﹣2=﹣1,﹣4+3=﹣1, ∴平移前的抛物线的...

两棵树种在倾角为24°36′的斜坡上,它们的坡面距离是4米,求它们之间的水平距离(可用计算器计算,精确到0.1米)

3.6米 【解析】试题分析:根据题意可知倾角为24°36′,即坡角为24°36′, 利用余弦关系cos24°36′==0.909, 可求出它们之间的水平距离为:水平距离≈3.6米.

如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为( ).

A. 100米 B. 米 C. 米 D. 50米

B 【解析】试题分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC=100米,然后再计算出∠CBM=30°,进而得到CM=BC=50米,∴BM=CM=米. 故选:B.

下列说法中错误的是( )

A .在函数y=-x2中,当x=0时y有最大值0

B.在函数y=2x2中,当x>0时y随x的增大而增大

C.抛物线y=2x2,y=-x2,中,抛物线y=2x2的开口最小,抛物线y=-x2的开口最大

D.不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点

C 【解析】由函数的解析式y=-x2,可知a=-1<0,得到函数的开口向下,有最大值y=0,故A正确; 由函数的解析式y=2x2,可知其对称轴为y轴,对称轴的左边(x<0),y随x增大而减小,对称轴的右边(x>0),y随x增大而增大,故B正确; 根据二次函数的性质,可知系数a决定开口方向和开口大小,且a的值越大开口越小,可知抛物线y=2x2的开口最小,抛物线y=-x2的开口第二小...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网