题目内容
如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,求该斜坡的坡比
![]()
某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y= -2x+100.(利润=售价-制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
如图,已知抛物线y=
x2-
x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.
![]()
(1)直接写出A、D、C三点的坐标;
(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;
(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可以用图象表示为( )
![]()
![]()
A. (A) B. (B) C. (C) D. (D)
抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x-1)2-4,则b,c的值分别为( )
A. b=2,c=-6 B. b=2,c=0
C. b=-6,c=8 D. b=-6,c=2
河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:
则AB的长为_______
![]()
如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC为6m,则这两棵树之间的坡面AB的长为( )
![]()
A. 12m B. 3
m C. 4
m D. 12
m
抛物线y=x2-2x+3的顶点坐标是_______.
已知不论x为何值,x2-kx-15=(x+5)(x-3),则k值为( )
A. 2 B. -2 C. 5 D. -3