题目内容

16.如图,在△ABC中,∠C=90°,BE是∠ABC的平分线,过点E作BE的垂线交AB于点F,⊙O是△BDE的外接圆.求证:
(1)AC是⊙O的切线;
(2)CG=DF.

分析 (1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;
(2)连结GE,先根据HL证明△CGE≌△FDE,再由全等三角形的对应边相等即可得出CG=DF.

解答 证明:(1)如图,连接OE.
∵DE⊥BE,
∴∠BED=90°,
∴BD是圆O的直径.
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切线;

(2)如图,连结EG.
∵∠CBE=∠OBE,EC⊥BC于C,EF⊥AB于F,
∴EC=EF.
∵∠CBE=∠DBE,
∴DE=EG,
在RT△CGE与△RT△FDE中,
$\left\{\begin{array}{l}{EC=EF}\\{EG=CE}\end{array}\right.$,
∴△CGE≌△FDE(HL),
∴CG=DF.

点评 本题主要考查了切线的判定,全等三角形的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网