题目内容
7.(1)观察下列各式:$\sqrt{2-\frac{2}{5}}$=$\sqrt{\frac{8}{5}}$=$\sqrt{\frac{4×2}{5}}$=2$\sqrt{\frac{2}{5}}$,即$\sqrt{2-\frac{2}{5}}$=2$\sqrt{\frac{2}{5}}$;
$\sqrt{3-\frac{3}{10}}$=$\sqrt{\frac{27}{10}}$=$\sqrt{\frac{9×3}{10}}$=3$\sqrt{\frac{3}{10}}$;即$\sqrt{3-\frac{3}{10}}$=3$\sqrt{\frac{3}{10}}$;
(2)按照上面规律,根据你的理解请填写:$\sqrt{4-\frac{4}{17}}$=$\sqrt{\frac{64}{17}}$=$\sqrt{\frac{16×4}{17}}$═4$\sqrt{\frac{4}{17}}$,即$\sqrt{4-\frac{4}{17}}$=4$\sqrt{\frac{4}{17}}$.
(3)猜想:$\sqrt{5-\frac{5}{26}}$=5$\sqrt{\frac{5}{26}}$
(4)请你用含有自然数n(n>2)的式子写出你发现的规律.
分析 (2)根据算术平方根的概念进行计算;
(3)根据计算过程和各式的变化规律猜想结果;
(4)根据给出各式的计算过程和结果,总结规律.
解答 解:(2)按照上面规律,根据你的理解请填写:$\sqrt{4-\frac{4}{17}}$=$\sqrt{\frac{64}{17}}$=$\sqrt{\frac{16×4}{17}}$═4$\sqrt{\frac{4}{17}}$,即$\sqrt{4-\frac{4}{17}}$=4$\sqrt{\frac{4}{17}}$.
(3)$\sqrt{5-\frac{5}{26}}$=5$\sqrt{\frac{5}{26}}$
(4)$\sqrt{n-1-\frac{n+1}{(n+1)^{2}+1}}$=(n+1)$\sqrt{\frac{n+1}{(n+1)^{2}+1}}$.
故答案为:(2)$\sqrt{\frac{64}{17}}$,$\sqrt{\frac{16×4}{17}}$,4$\sqrt{\frac{4}{17}}$,4$\sqrt{\frac{4}{17}}$;(3)5$\sqrt{\frac{5}{26}}$.
点评 本题考查的是算术平方根的性质和数字的变化类知识,掌握算术平方根的概念、从给出的式子中正确找出规律是解题的关键.
练习册系列答案
相关题目
15.某工艺厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润为8000元?
(3)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润不低于8000元?
| 销售单价x(元∕件) | … | 30 | 40 | 50 | 60 | … |
| 每天销售量y(件) | … | 500 | 400 | 300 | 200 | … |
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润为8000元?
(3)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润不低于8000元?
6.四个各不相等的整数a、b、c、d,满足abcd=9,则a+b+c+d=( )
| A. | 无法确定 | B. | 4 | C. | 10 | D. | 0 |