题目内容

20.如图,抛物线y=a(x-$\sqrt{2}$m)2-m(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m).点A关于直线l的对称点为B,作BC⊥x轴于点C,连接PC、PB,与抛物线、x轴分别相交于点D、E,连接DE.将△PBC沿直线PB翻折,得到△PBC′.
(1)该抛物线的解析式为y=$\frac{1}{m}(x-\sqrt{2}m)^{2}-m$;(用含m的式子表示);
(2)探究线段DE、BC的关系,并证明你的结论;
(3)直接写出C′点的坐标(用含m的式子表示).

分析 (1)将点A的坐标代入抛物线解析式,即可求出a的值;
(2)根据抛物线的解析式,求出顶点P的坐标,根据对称轴,求出点B,C的坐标,根据待定系数法求出直线BP、CP的解析式,求出点D、E的坐标,进而求出DE,BC的长度,即可解得;
(3)连接CC′交直线BP于点F,则CC′⊥BP,且CF=C′F,求出CC′的解析式,进而求得点F的坐标,根据CF=C′F,即可解答.

解答 解:(1)把点A(0,m)代入y=$a(x-2\sqrt{2}m)^{2}-m$,
得:2am2-m=m,
am-1=0,
∵am>1,
∴a=$\frac{1}{m}$,
∴y=$\frac{1}{m}(x-\sqrt{2}m)^{2}-m$,
故答案为:y=$\frac{1}{m}(x-\sqrt{2}m)^{2}-m$;
(2)DE=$\frac{1}{2}$BC.
理由:又抛物线y=$\frac{1}{m}(x-\sqrt{2}m)^{2}-m$,可得抛物线的顶点坐标P($\sqrt{2}$m,-m),
由l:x=$\sqrt{2}$m,可得:点B(2$\sqrt{2}$m,m),
∴点C(2$\sqrt{2}$m,0).
设直线BP的解析式为y=kx+b,点P($\sqrt{2}$m,-m)和点B(2$\sqrt{2}$m,m)在这条直线上,
得:$\left\{\begin{array}{l}{\sqrt{2}mk+b=-m}\\{2\sqrt{2}mk+b=m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=\sqrt{2}}\\{b=-3m}\end{array}\right.$,
∴直线BP的解析式为:y=$\sqrt{2}$x-3m,
令y=0,$\sqrt{2}$x-3m=0,解得:x=$\frac{3\sqrt{2}}{2}m$,
∴点D($\frac{3\sqrt{2}}{2}m$,0);
设直线CP的解析式为y=k1x+b1,点P($\sqrt{2}$m,-m)和点C(2$\sqrt{2}$m,0)在这条直线上,
得:$\left\{\begin{array}{l}{2\sqrt{2}m{k}_{1}+{b}_{1}=0}\\{\sqrt{2}m{k}_{1}+{b}_{1}=-m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{k}_{1}=\frac{\sqrt{2}}{2}}\\{{b}_{1}=-2m}\end{array}\right.$,
∴直线CP的解析式为:y=$\frac{\sqrt{2}}{2}$x-2m;
抛物线与直线CP相交于点E,可得:$\left\{\begin{array}{l}{y=\frac{1}{m}(x-2m)^{2}-m}\\{y=\frac{\sqrt{2}}{2}x-2m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{x}_{1}=\frac{3\sqrt{2}}{2}m}\\{{y}_{1}=-\frac{m}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=\sqrt{2}m}\\{{y}_{2}=-m}\end{array}\right.$(舍去),
∴点E($\frac{3\sqrt{2}}{2}m$,-$\frac{m}{2}$);
∵xD=xE
∴DE⊥x轴,
∴DE=yD-yE=$\frac{m}{2}$,BC=yB-yC=m=2DE,
即DE=$\frac{1}{2}$BC;
(3)C′($\frac{4\sqrt{2}}{3}m$,$\frac{2}{3}m$).
连接CC′,交直线BP于点F,
∵BC′=BC,∠C′BF=∠CBF,
∴CC′⊥BP,CF=C′F,
设直线BP的解析式为y=kx+b,点B(2$\sqrt{2}$m,m),P($\sqrt{2}$m,-m)在直线上,
∴$\left\{\begin{array}{l}{2\sqrt{2}mk+b=m}\\{\sqrt{2}mk+b=-m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=\sqrt{2}}\\{b=-3m}\end{array}\right.$,
∴直线BP的解析式为:y=$\sqrt{2}$x-3m,
∵CC′⊥BP,
∴设直线CC′的解析式为:y=$-\frac{\sqrt{2}}{2}$x+b1
∴$-\frac{\sqrt{2}}{2}×2\sqrt{2}m+{b}_{1}=0$,解得:b1=2m,
联立①②,得:$\left\{\begin{array}{l}{y=\sqrt{2}x-3m}\\{y=-\frac{\sqrt{2}}{2}x+2m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{5\sqrt{2}}{3}m}\\{y=\frac{m}{3}}\end{array}\right.$,
∴点F($\frac{5\sqrt{2}}{3}m$,$\frac{m}{3}$),
∴CF=$\sqrt{(\frac{5\sqrt{2}}{3}m-2\sqrt{2}m)^{2}+(\frac{m}{3})^{2}}$=$\frac{\sqrt{3}}{3}m$,
设点C′的坐标为(a,$-\frac{\sqrt{2}}{2}a+2m$),
∴C′F=$\sqrt{(\frac{5\sqrt{2}}{3}m-a)^{2}+(\frac{m}{3}+\frac{\sqrt{2}}{2}a-2m)^{2}}$=$\frac{\sqrt{3}}{3}m$,解得:a=$\frac{4\sqrt{2}}{3}m$,
∴$-\frac{\sqrt{2}}{2}a+2m=\frac{2}{3}m$,
∴C′($\frac{4\sqrt{2}}{3}m$,$\frac{2}{3}m$).

点评 本题主要考查二次函数与一次函数的综合运用,能够熟练求出直线的解析式和各点的坐标是解决此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网