题目内容

8.若关于x的一元二次方程(m-2)x2-2x+1=0有实根,则m的取值范围是(  )
A.m<3B.m≤3C.m<3且m≠2D.m≤3且m≠2

分析 由于x的一元二次方程(m-2)x2-2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.

解答 解:∵关于x的一元二次方程(m-2)x2-2x+1=0有实根,
∴m-2≠0,并且△=(-2)2-4(m-2)=12-4m≥0,
∴m≤3且m≠2.
故选D.

点评 本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网