题目内容
计算
= ;
= ;
= ;
(2)猜想
= ;
= ;
(3)猜想
的结果并验证.
(4)计算
+
+
+…+
.
1+
|
1+
|
1+
|
(2)猜想
1+
|
1+
|
(3)猜想
1+
|
(4)计算
1+
|
1+
|
1+
|
1+
|
考点:二次根式的性质与化简
专题:规律型
分析:(1)计算出被开方数,然后开方;
(2)总结规律,猜想结果;
(3)猜想结果,代入数值验证;
(4)根据前三步得到规律,进行转化,消掉中间项,相加即可.
(2)总结规律,猜想结果;
(3)猜想结果,代入数值验证;
(4)根据前三步得到规律,进行转化,消掉中间项,相加即可.
解答:解:(1)
=
=
;
=
=
;
=
=
;
(2)
=
=
;
=
=
;
(3)
=
;
当n=2时,
=
;
=
,
=
.
(4)原式
+
+
+
+
+…+
=1+
+1+
+1+
+1+
+…+1+
=2003+
+
+
+…+
=2003+1-
+
-
+
-
+…+
-
=2003+
=2003
.
1+
|
|
| 3 |
| 2 |
1+
|
|
| 7 |
| 6 |
1+
|
|
| 13 |
| 12 |
(2)
1+
|
| 4×5+1 |
| 4×5 |
| 21 |
| 20 |
1+
|
| 2003×2004+1 |
| 2003×2004 |
| 4014013 |
| 4014012 |
(3)
1+
|
| n(n+1)+1 |
| n(n+1) |
当n=2时,
1+
|
| 7 |
| 6 |
| 2×(2+1)+1 |
| 2×(2+1) |
| 7 |
| 6 |
1+
|
| 2×(2+1)+1 |
| 2×(2+1) |
(4)原式
| 3 |
| 2 |
| 7 |
| 6 |
| 13 |
| 12 |
| 21 |
| 20 |
| 31 |
| 30 |
| 2003×2004+1 |
| 2003×2004 |
=1+
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 2003×2004 |
=2003+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2003×2004 |
=2003+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2003 |
| 1 |
| 2004 |
=2003+
| 2003 |
| 2004 |
=2003
| 2005 |
| 2004 |
点评:本题考查了二次根式的性质与化简,计算出各式的值,总结规律后化简.此类题目将规律隐藏在大量的计算中,要仔细寻找.
练习册系列答案
相关题目
已知a=2+
,则(a-1)(a-3)的值为( )
| 5 |
| A、24 | ||
B、2
| ||
| C、2 | ||
| D、4 |