题目内容

如图,在梯形ABCD中,AB∥DC;
(1)已知∠A=∠B,求证:AD=BC;
(2)已知AD=BC,求证:∠A=∠B.
考点:梯形
专题:证明题
分析:(1)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;
(2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.
解答:证明:(1)过C作CE∥AD,
∵AB∥DC,
∴四边形ADCE是平行四边形,
∴AD=CE,
∵AD∥CE,
∴∠A=∠CEB,
∵∠A=∠B,
∴∠CEB=∠B,
∴CE=CB,
∴AD=CB;

(2)过C作CE∥AD,
∵AB∥DC,
∴四边形ADCE是平行四边形,
∴AD=CE,
∵AD=BC,
∴CE=CB,
∴∠B=∠CEB,
∵AD∥CE,
∴∠A=∠CEB,
∴∠B=∠A.
点评:此题主要考查了梯形,关键是正确做出平行线,构造平行四边形,再结合平行四边形的性质进行证明.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网