题目内容

11.解方程组
(1)$\left\{\begin{array}{l}{x-y=3}\\{3x+5y=1}\end{array}\right.$                         
(2)$\left\{\begin{array}{l}{3x-y+z=10}\\{x+2y-z=6}\\{x+y+z=12}\end{array}\right.$.

分析 (1)用代入法求解即可;
(2)先消掉z,转化成关于x,y的二元一次方程组,再求解即可.

解答 解:(1)$\left\{\begin{array}{l}{x-y=3①}\\{3x+5y=1②}\end{array}\right.$,
由①得,y=x-3③,
把③代入②得,3x+5(x-3)=1,
解得x=2,
把x=2代入③得,y=-1,
所以方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;

(2)$\left\{\begin{array}{l}{3x-y+z=10①}\\{x+2y-z=6②}\\{x+y+z=12③}\end{array}\right.$,
①+②得4x+y=16④
②+③得2x+3y=18⑤,
⑤×2得4x+6y=36⑥,
⑥-④得5y=20,解得y=4,
把y=4代入⑤,得x=3,
把x=3,y=4代入③得z=5,
所以方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=4}\\{z=5}\end{array}\right.$.

点评 本题考查了解方程组,掌握用消元法解方程组是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网