题目内容

下列事件发生的可能性为0的是( )

A. 掷两枚骰子,同时出现数字“6”朝上

B. 小明从家里到学校用了10分钟,从学校回到家里却用了15分钟

C. 今天是星期天,昨天必定是星期六

D. 小明步行的速度是每小时40千米

D 【解析】对于A,掷两枚骰子,同时出现数字“6”朝上,可能性为; 对于B,小明从家里到学校用了10分钟,从学校回到家里却用了15分钟是可能是,比如去学校时下坡,则回家时上坡,当然回家比去学校用时多; 对于C,今天是星期天,昨天必定是星期六这是一个必然发生的事件,可能性为1; 对于D,小明步行的速度是每小时40千米,是不存在的.一般人步行的速度为3-5公里每小时,所以D发生...
练习册系列答案
相关题目

已知,求A、B的值.

A=1,B=1. 【解析】试题分析:已知等式右边两项通分并利用同分母分式的加法法则计算,利用分式相等的条件即可求出A与B. 试题解析: 【解析】 ===, ∴, 解得: .

已知:如图,在?ABCD中,∠ADC,∠DAB的平分线DF,AE分别与线段BC相交于点F,E,DF与AE相交于点G.

(1)求证:AE⊥DF;

(2)若AD=10,AB=6,AE=4,求DF的长.

(1)证明见解析;(2). 【解析】试题分析:(1)根据平行四边形的性质和平行线的性质推出∠ADC+∠DAB=180°,根据角平分线得到∠ADF+∠DAE=(∠ADC+∠DAB)=90°,即可求出结论; (2)过点D作DH∥AE,交BC的延长线于点H,得到平行四边形AEHD,求出DH=AE=4,EH=AD=10,根据平行四边形的性质和平行线的性质推出DC=FC,AB=EB,求出BF、F...

为了了解参加某运动会的2000名运动员的年龄情况,从中抽查了100名运动员的年龄,“某运动员被抽到”这一事件是______事件.

随机. 【解析】由题意知是从2000名运动员的年龄中抽取100名运动员的年龄,每一名运动员被投到的频率为,即为,所以某运动员被抽到这一事件是随机事件.

下列事件中,随机事件是( )

A. 没有水分,种子仍能发芽 B. 等腰三角形两个底角相等

C. 从13张红桃扑克牌中任抽一张,是红桃A D. 从13张方块扑克牌中任抽一张,是红桃10

C 【解析】对于A,没有水分,种子仍能发芽,这是一个不可能事件,发生的可能性为0;对于B,是一个必然事件,发生的可能性是1;对于C,是一个随机事件,发生的可能性是;对于D,是一个不可能事件,发生的可能性是0.发生的可能性是0和1的,都属于必然事件. 故选C.

下列条形中的能代圆形图所表示的数据( )

A. B. C. D.

C 【解析】由图知,阴影部分与空白部分面积相等,在给出的四个选项中,只有C中有阴影的两个矩形面积之和等于空白矩形面积. 故选C.

如图所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.

证明:∵BE=DF, ∴BE-EF=DF-EF, ∴DE=BF, ∵四边形ABCD是平行四边形, ∴AD=BC,AD∥BC, ∴∠ADE=∠CBF, 在△ADE和△CBF中, ∴△ADE≌△CBF(SAS), ∴AE=CF. 【解析】 求出DE=BF,根据平行四边形性质求出AD=BC,AD∥BC,推出∠ADE=∠CBF,证出△ADE≌△CBF即可.

如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是________.

50° 【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可. 【解析】 ∵MN是AB的垂直平分线, ∴AD=BD, ∴∠A=∠ABD, ∵∠DBC=15°, ∴∠ABC=∠A+15°, ∵AB=AC...

分解因式:①=____________ ;②=_________________.

; 【解析】①=y2-x2=(y+x)(y-x); ②= (9x2-y2)= (3x+y)(3x-y), 故答案为:①;② .

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网