计算的结果是( )

A. B. C. D.

B 【解析】原式=?===. 故选:B.

“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.

(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?

(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.

【解析】 (1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆, 根据题意得: ,解得: 。 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆。 (2)设载重量为8吨的卡车增加了z辆, 依题意得:8(5+z)+10(7+6﹣z)>165,解得:z<。 ∵z≥0且为整数,∴z=0,1,2,6﹣z=6,5,4。 ∴车队共有3种购车方案: ...

解不等式,并把解集在数轴上表示出来:

(1)5x﹣6≤2(x+3);

(2)

(1)x≤4; (2)x>﹣1, 【解析】【试题分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得; (2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得. 【试题解析】(1)去括号,得:5x﹣6≤2x+6, 移项,得:5x﹣2x≤6+6, 合并同类项,得:3x≤12, 系数化为1,得:x≤4, ...

若a>c,则当m_________时,am<cm; 当m_________时,am=cm.

<0 =0 【解析】根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,可知m<0. ∵a>c, 又知:am<cm, ∴根据不等式的基本性质3可得: m<0; 又知:am=cm, ∴m=0. 故答案为:<0;=0.

如图,当y<0时,自变量x的范围是( )

A.x<-2 B.x>-2 C.x<2 D.x>2

A. 【解析】 试题解析:由图象可得,一次函数的图象与x轴的交点为(-2,0),当y<0时,x<-2. 故选A.

如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.

(1)请判断四边形EBGD的形状,并说明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.

(1)四边形EBGD是菱形,理由见解析;(2). 【解析】试题分析:(1)四边形EBGD是菱形,根据已知条件易证△EFD≌△GFB,可得ED=BG,所以BE=ED=DG=GB,即可判定四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题. 试题解析:(1)四边形EBGD是菱形. 理由:...

如图,在?ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为(  )

A. B. C. D.

C 【解析】∵∠ABC的平分线交CD于点F, ∴∠ABE=∠CBE, ∵四边形ABCD是平行四边形, ∴DC∥AB, ∴∠CBE=∠CFB=∠ABE=∠E, ∴CF=BC=AD=8,AE=AB=12, ∵AD=8, ∴DE=4, ∵DC∥AB, ∴, ∴, ∴EB=6, ∵CF=CB,CG⊥BF, ∴BG=BF=2...

(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.

或. 【解析】由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形. 因此,本题需要按以下两种情况分别求解. (1) 当∠ONM=90°时,则DN⊥BC. 过点E作EF⊥BC,垂足为F.(如图) ∵在Rt△ABC中,∠A=90°,AB=AC, ∴∠C=45°, ∵BC=20, ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网