题目内容
如图,当y<0时,自变量x的范围是( )
![]()
A.x<-2 B.x>-2 C.x<2 D.x>2
某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.
![]()
(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x个.
①根据题意,完成以下表格:
纸盒 纸板 | 竖式纸盒(个) | 横式纸盒(个) |
x | 100﹣x | |
正方形纸板(张) | 2(100﹣x) | |
长方形纸板(张) | 4x |
②按两种纸盒的生产个数来分,有哪几种生产方案?
(2)若有正方形纸162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求a的值.
某商人从批发市场买了20千克肉,每千克a元,又从肉店买了10千克肉,每千克b元,最后他又以
元的单价把肉全部卖掉,结果赔了钱,原因是( )
A. a>b B. a<b C. a=b D. 与a和b的大小无关
不等式组﹣1<x﹣5<11的解集是_________.
如果不等式组
有解,那么m的取值范围是( )
A. m>5 B. m≥5 C. m<5 D. m≤8
我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
![]()
已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.
(1)求证:△ABF≌△CDE;
(2)如图,若∠1=65°,求∠B的大小.
![]()
如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是( )
![]()
A.5 B.7 C.8 D.10
一个多边形的内角和是外角和的2倍,则这个多边形的边数为______.