题目内容

如图,当y<0时,自变量x的范围是( )

A.x<-2 B.x>-2 C.x<2 D.x>2

A. 【解析】 试题解析:由图象可得,一次函数的图象与x轴的交点为(-2,0),当y<0时,x<-2. 故选A.
练习册系列答案
相关题目

某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.

(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共100个,设做竖式纸盒x个.

①根据题意,完成以下表格:

纸盒

纸板

竖式纸盒(个)

横式纸盒(个)

x

100﹣x

正方形纸板(张)

2(100﹣x)

长方形纸板(张)

4x

②按两种纸盒的生产个数来分,有哪几种生产方案?

(2)若有正方形纸162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.求a的值.

(1)①见解析;②有三种方案:生产竖式纸盒38个,横式纸盒62个;生产竖式纸盒39个,横式纸盒61个;生产竖式纸盒40个,横式纸盒60个; (2)293或298或303(写出其中一个即可). 【解析】试题分析:(1)①可根据竖式纸盒+横式纸盒=100个,每个竖式纸盒需1个正方形纸板和4个长方形纸板,每个横式纸盒需3个长方形纸板和2个正方形纸板来填空. ②生产竖式纸盒用的正方形纸板...

不等式组﹣1<x﹣5<11的解集是_________.

4<x<16 【解析】不等式每个部分都加5得,4<x<16. 故答案为:4<x<16.

我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形. 【解析】试题分析:(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可. (2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可. (3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠B...

已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.

(1)求证:△ABF≌△CDE;

(2)如图,若∠1=65°,求∠B的大小.

(1)证明见解析;(2)50°. 【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果. 试题解析:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AD∥BC,∠B=∠D, ∴∠1=∠DCE...

如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是( )

A.5 B.7 C.8 D.10

D. 【解析】 试题分析:∵AB=4,BC=6,DE、DF是△ABC的中位线,∴DE=AB=2,DF=BC=3,DE∥BF,DF∥BE,∴四边形BEDF为平行四边形,∴四边形BEDF的周长为:2×2+3×2=10,故选D.

一个多边形的内角和是外角和的2倍,则这个多边形的边数为______.

6 【解析】∵多边形的外角和是360度,多边形的内角和是外角和的2倍, 则内角和是720度, 720÷180+2=6, ∴这个多边形是六边形, 故答案为:6.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网