题目内容

如图,在?ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为(  )

A. B. C. D.

C 【解析】∵∠ABC的平分线交CD于点F, ∴∠ABE=∠CBE, ∵四边形ABCD是平行四边形, ∴DC∥AB, ∴∠CBE=∠CFB=∠ABE=∠E, ∴CF=BC=AD=8,AE=AB=12, ∵AD=8, ∴DE=4, ∵DC∥AB, ∴, ∴, ∴EB=6, ∵CF=CB,CG⊥BF, ∴BG=BF=2...
练习册系列答案
相关题目

如图1,四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC。

(1)求证:AC=DB;

(2)如图2,E、F两点同时从A、D出发在直线AD上以相同的速度反向而行,BF和CE会相等吗?请证明你的结论。

(1)证明见解析(2)BF=CE 【解析】试题分析: (1)由∠ABC=∠DCB,AB=DC结合BC=CB即可证得:△ABC≌△DCB,从而可得AC=DB; (2)由题意可得AE=DF,从而可得AF=DE,由AD∥BC结合∠ABC=∠DCB,易得∠BAD=∠CDA,再结合AB=DC即可证得△BAF≌△CDE,从而可得BF=CE. 试题解析: (1)在△ABC和△DCB...

已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.

(1)求证:△ABF≌△CDE;

(2)如图,若∠1=65°,求∠B的大小.

(1)证明见解析;(2)50°. 【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果. 试题解析:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AD∥BC,∠B=∠D, ∴∠1=∠DCE...

如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )

A.4 B.8 C.2 D.4

D. 【解析】 试题分析:在RT△ABF中,∠AFB=90°,AD=DB,DF=4,利用直角三角形斜边中线性质可得AB=2DF=8,再由AD=DB,AE=EC,可得DE∥BC,∠ADE=∠ABF=30°,所以AF=AB=4,由勾股定理可得BF=4.故选D.

如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是( )

A.5 B.7 C.8 D.10

D. 【解析】 试题分析:∵AB=4,BC=6,DE、DF是△ABC的中位线,∴DE=AB=2,DF=BC=3,DE∥BF,DF∥BE,∴四边形BEDF为平行四边形,∴四边形BEDF的周长为:2×2+3×2=10,故选D.

已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.

四边形ABFC是平行四边形;证明见解析. 【解析】 试题分析:易证△ABE≌△FCE(AAS),然后利用一组对边平行且相等可判断四边形ABFC是平行四边形. 试题解析:四边形ABFC是平行四边形;理由如下:∵AB∥CD,∴∠BAE=∠CFE,∵E是BC的中点, ∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);∴AB=CF,又∵AB∥CF,∴四边形AB...

在?ABCD中,AB=3,BC=4,当?ABCD的面积最大时,下列结论正确的有(  )

①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.

A. ①②③ B. ①②④ C. ②③④ D. ①③④

B 【解析】根据题意得:当?ABCD的面积最大时,四边形ABCD为矩形, ∴∠A=∠B=∠C=∠D=90°,AC=BD, ∴AC==5, ①正确,②正确,④正确;③不正确; 故选:B.

如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为   

(1+,2)或(1﹣,2). 【解析】【解析】 ∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在中,令y=2,可得,解得x=,∴P点坐标为(,2)或(,2),故答案为:(,2)或(,2).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网