ÌâÄ¿ÄÚÈÝ
6£®ÏÈÑéÖ¤ÏÂÁнáÂÛµÄÕýÈ·ÐÔ£º¢Ù·½³Ìx-$\frac{1}{x}$=2-$\frac{1}{2}$µÄ¸ùÊÇx1=2£¬x2=-$\frac{1}{2}$£»
¢Ú·½³Ìx-$\frac{1}{x}$=3Ò»$\frac{1}{3}$µÄ¸ùÊÇx1=3£¬x2=-$\frac{1}{3}$£»
¢Û·½³Ìx-$\frac{1}{x}$=3+$\frac{3}{4}$µÄ¸ùÊÇx1=4£¬x2=-$\frac{1}{4}$£»
¢Ü·½³Ìx-$\frac{1}{x}$=4+$\frac{4}{5}$µÄ¸ùÊÇx1=5£¬x2=-$\frac{1}{5}$£®
ÔÙ¹Û²ìÉÏÊö·½³Ì¼°Æä¸ùµÄÌØÕ÷£¬²ÂÏë·½³Ìx-$\frac{1}{x}$=8$\frac{8}{9}$µÄ¸ùÊÇʲô£¬²¢ÑéÖ¤ÄãµÄ²ÂÏ룮
·ÖÎö °Ñ·½³ÌµÄ¸ù·Ö±ð´úÈë·½³Ì¼´¿ÉÑéÖ¤£»
¸ù¾Ý´ø·ÖÊýµÄ·Öĸд³ö·½³ÌµÄ¸ù£¬È»ºó½â·Öʽ·½³ÌÑéÖ¤¼´¿É£®
½â´ð ½â£º¢Ùx1=2ʱ£¬×ó±ß=2-$\frac{1}{2}$£¬×ó±ß=Óұߣ¬
x2=-$\frac{1}{2}$ʱ£¬×ó±ß=-$\frac{1}{2}$-$\frac{1}{-\frac{1}{2}}$=2-$\frac{1}{2}$£¬×ó±ß=Óұߣ»
¢Úx1=3ʱ£¬×ó±ß=3-$\frac{1}{3}$£¬×ó±ß=Óұߣ¬
x2=-$\frac{1}{3}$ʱ£¬×ó±ß=-$\frac{1}{3}$-$\frac{1}{-\frac{1}{3}}$=3-$\frac{1}{3}$£¬×ó±ß=Óұߣ»
¢Ûx1=4ʱ£¬×ó±ß=4-$\frac{1}{4}$=3+$\frac{3}{4}$£¬×ó±ß=Óұߣ¬
x2=-$\frac{1}{4}$ʱ£¬×ó±ß=-$\frac{1}{4}$-$\frac{1}{-\frac{1}{4}}$=4-$\frac{1}{4}$=3+$\frac{3}{4}$£¬×ó±ß=Óұߣ»
¢Üx1=5ʱ£¬×ó±ß=5-$\frac{1}{5}$=4+$\frac{4}{5}$£¬×ó±ß=Óұߣ¬
x2=-$\frac{1}{5}$ʱ£¬×ó±ß=-$\frac{1}{5}$-$\frac{1}{-\frac{1}{5}}$=5-$\frac{1}{5}$=4+$\frac{4}{5}$£¬×ó±ß=Óұߣ»
²ÂÏ룺·½³Ìx-$\frac{1}{x}$=8$\frac{8}{9}$µÄ¸ùÊÇx1=9£¬x2=-$\frac{1}{9}$£»
ÑéÖ¤£º·½³ÌÁ½±ß¶¼³ËÒÔ9xµÃ£¬9x2-9-80x=0£¬
£¨x-9£©£¨9x+1£©=0£¬
x-9=0£¬9x+1=0£¬
ËùÒÔ£¬x1=9£¬x2=-$\frac{1}{9}$£®
µãÆÀ ±¾Ì⿼²éÁË·Öʽ·½³ÌµÄ½â£¬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬¹Û²ì³ö·½³ÌµÄ½âÓë´ø·ÖÊýµÄ·ÖĸµÄ¹ØÏµÊǽâÌâµÄ¹Ø¼ü£®
| A£® | 4cm | B£® | 5cm | C£® | 8cm | D£® | 9cm |
| A£® | x1=a£¬x2=$\frac{2}{a-1}$ | B£® | x1=a-1£¬x2=$\frac{2}{a-1}$ | C£® | x1=a£¬x2=$\frac{a+1}{a-1}$ | D£® | x1=a£¬x2=$\frac{a}{a-1}$ |
| A£® | 3 5 6 | B£® | 2 3 4 | C£® | 6 7 9 | D£® | 1.5 2 2.5 |