题目内容
2.(1)在运动过程中,四边形AECF的形状是平行四边形;
(2)t=1时,四边形AECF是矩形;
(3)求当t等于多少时,四边形AECF是菱形.
分析 (1)由平行四边形的性质得出AB=CD=2cm,AB∥CD,由已知条件得出CF=AE,即可得出四边形AECF是平行四边形;
(2)若四边形AECF是矩形,则∠AFC=90°,得出AF⊥CD,由平行四边形的面积得出AF=4cm,在Rt△ACF中,由勾股定理得出方程,解方程即可;
(3)当AE=CE时,四边形AECF是菱形.过C作CG⊥BE于G,则CG=4cm,由勾股定理求出AG,得出GE,由勾股定理得出方程,解方程即可.
解答 解:(1)四边形AECF是平行四边形;理由如下:
∵四边形ABCD是平行四边形,
∴AB=CD=2cm,AB∥CD,
∴CF∥AE,
∵DF=BE,
∴CF=AE,
∴四边形AECF是平行四边形;
故答案为:平行四边形;
(2)t=1时,四边形AECF是矩形;理由如下:
若四边形AECF是矩形,
∴∠AFC=90°,
∴AF⊥CD,
∵S?ABCD=CD•AF=8cm2,
∴AF=4cm,
在Rt△ACF中,AF2+CF2=AC2,
即42+(t+2)2=52,
解得:t=1,或t=-5(舍去),
∴t=1;故答案为:1;
(3)依题意得:AE平行且等于CF,![]()
∴四边形AECF是平行四边形,
故AE=CE时,四边形AECF是菱形.
又∵BE=tcm,
∴AE=CE=t+2(cm),
过C作CG⊥BE于G,如图所示:
则CG=4cmcm,
∵AG=$\sqrt{A{C}^{2}-C{G}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3(cm),
∴GE=t+2-3=t-1(cm),
在△CGE中,由勾股定理得:CG2+GE2=CE2=AE2,
即42+(t-1)2=(t+2)2,
解得:t=$\frac{13}{6}$,
即t=$\frac{13}{6}$s时,四边形AECF是菱形.
点评 本题考查了平行四边形的性质与判定、菱形的判定、矩形的判定、勾股定理等知识;熟练掌握平行四边形的性质,由勾股定理得出方程是解决问题的关键.
| A. | $\sqrt{12}$ | B. | $\sqrt{\frac{a}{b}}$ | C. | $\sqrt{{a}^{2}+1}$ | D. | $\sqrt{4a+4}$ |
| 阅读本数n(本) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 人数(名) | 1 | 2 | 6 | 7 | 12 | x | 7 | y | 1 |
(1)求出本次随机抽取的学生总人数;
(2)分别求出统计表中的x,y的值;
(3)估计该校九年级400名学生中为“优秀”档次的人数.