题目内容

20.解方程组:$\left\{\begin{array}{l}{\sqrt{x+\frac{1}{y}}+\sqrt{x-y-2}=4}\\{2x-y+\frac{1}{y}=10}\end{array}\right.$.

分析 设$\sqrt{x+\frac{1}{y}}$=a,$\sqrt{x-y-2}$=b,则原方程组化为$\left\{\begin{array}{l}{a+b=4①}\\{{a}^{2}+{b}^{2}=8②}\end{array}\right.$,求出方程组的解,再代入求出x、y即可.

解答 解:设$\sqrt{x+\frac{1}{y}}$=a,$\sqrt{x-y-2}$=b,
则原方程组化为:$\left\{\begin{array}{l}{a+b=4①}\\{{a}^{2}+{b}^{2}=8②}\end{array}\right.$
由①得:a=4-b③,
把③代入②得:(4-b)2+b2=8,
解得:b1=b2=2,
当b=2时,a=2,
即$\left\{\begin{array}{l}{\sqrt{x+\frac{1}{y}}=2}\\{\sqrt{x-y-2}=2}\end{array}\right.$
解得:$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$,
经检验$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$是原方程组的解,
所以原方程组的解为:$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$.

点评 本题考查了解无理方程组的应用,能把无理方程组转化成有理方程组是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网